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Abstract

The goal of the proposed master thesis is to define an architecture that

enables visual prototyping of real-time audio applications and plug-ins. Vi-

sual prototyping means that a developer can build a working application,

including user interface and processing core, just by assembling elements

together and changing their properties in a visual way. Specifically, this re-

search will address the problem of having to bind interactive user interface

to a real-time processing core, when both are defined dynamically, the set of

components is extensible, it allows bidirectional communication of arbitrary

types of data between the interface and the processing core, and, it still

fulfils the real-time requirements of audio applications.
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Chapter 1

Introduction

This thesis addresses the general problem of how to efficiently develop audio

and music software. This work proposes an architecture that enables visual

prototyping of real-time audio applications. We analyze implementation

issues that developers have to deal when developing different archetypes of

audio applications, such as user interface communication, multi-threading

or real-time restrictions, and the means that software engineering provides

to handle such complexities.

This chapter describes the context of this work, including its motivation,

the research context, a summary of the work, and a description of the content

of this thesis.

1.1 Motivation

I’ve been working on the Music Technology Group of the Universitat Pompeu

Fabra for six years. That dynamic research group leaded by Xavier Serra

is involved in the development of innovative audio and music technology.

One of my main function there was providing software engineering support

to other researchers, by porting, testing and optimizing code, integrating

systems and developing research prototypes. Those tasks provided me the

opportunity to be involved in the development of very different kinds of audio

applications: synthesizers, audio effects, authoring tools, music information

retrieval systems, plug-ins, web applications...

One of the main outputs of that activity has been the CLAM framework,

co-developed with Xavier Amatriain, Pau Arumı́ and others. The original
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intent of the framework was to join development efforts among different

teams within the group. Every team was implementing similar algorithms

and utilities and the framework was a common place to share them. This

way, testing and porting would be centralized and integration would be

easier. But we paid our initial design inexperience. The framework was

powerful enough to build the diverse set of applications we required to but

it was hardly usable by non-experts. Moving existing code to the framework

was a hard task.

Thus, over the last years, we focused on simplifying the framework us-

age and providing tools to easy develop with it. In this context, the work

presented in this thesis represents an step beyond on what similar frame-

works are able to do: An architecture to visually build full real-time audio

applications.

1.2 The problem

There is a long way from the conception of a novel audio processing algo-

rithm until it becomes an end-user product. In a very rough generalization

we can say that the typical process has two development levels. On the first

level, several versions of the processing algorithm are evaluated and their

parameters are tunned in order to get optimal results. Because this stage

requires flexibility, processing algorithms researchers often use scripting lan-

guages such as Matlab. In a later stage, algorithms are integrated into a

end-user product. Here computational performance is often a requirement

and the algorithm is usually ported to a low level compiled language such as

C or C++. This language port carries not just costs and time, but also risks

due to translation errors or to the evolution divergence, that usually hap-

pens after the translation, between the product and the research versions of

the algorithm. Another factor that make this two stage development hard

is the fact that an audio end-user product must address a lot of low level

platform issues that can be out of the scope of an algorithm demonstrator.

In order to have a quality end-user product, several refinement iterations are

needed on the interface, obtaining user feedback. This not only makes the

process longer but also leads to algorithm modifications not foreseen during

the research level. This research proposes means to reduce the gap between

the algorithm conception and a working end-user application.
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Both industry and academy can get the benefits of such research. In

the industry, reducing the time of the overall process, the so called ‘time to

market’[?], gives a clear advantage over competitors[?]. This fact, that is

already true for the traditional market, becomes even more vital for success

in the context of the fast paced technology market. Academy could also

benefit of having end-user applications of their technology. When conduc-

ing user experiments, a end-user application is more comfortable to use for

the subjects of the experiment. End-user application is also a good tech-

nology demonstrator. And working toward end-user application eases the

technology transfer to the society.

1.3 The proposed solution

So, how to address this problem? Proper development environment may

increase development productivity and thus, reduce the time to market[?].

Development frameworks offer system models that enables system develop-

ment dealing with concepts of the target domain. Eventually, frameworks

provide visual building tools which also boost the development productivity

[?]. In the audio and music domain, the approach of modeling systems using

visual data-flow tools has been widely and successfully used in frameworks

such as PD [?], Marsyas [?], Open Sound World [?] and CLAM [?].

But, such environments are used to build just processing algorithms, not

full applications ready for the public. A full application would need further

development work addressing the user interface and the application work-

flow. User interface design is supported by existing toolboxes and visual

interface builders which gives a similar flexibility for the user interface than

the one data-flow tools provide to build the processing core. Examples of

such environment which are freely available are Qt Designer [?], Fltk Fluid

[?] or Gtk’s Glade [?]. But such tools just solve the composition of graphical

components into a layout and limited reactivity. They still do not address

a lot of low level programming that is needed to solve the typical problems

that an audio application mostly related to the communication between the

processing core and the user interface.

The proposed research is to define an architecture that provides the logic

to bind a data-flow definition built with a visual data-flow editor to a user

interface defined with a visual GUI builder in order to build a full featured
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real-time audio applications.

Challenges to be addressed are two fold. On one hand, the architecture

should solve all the programming issues that developers of real-time audio

applications currently have to face, and do it in a transparent and generalized

way. On the other hand we should face new challenges introduced by the

prototyping architecture itself.

Real-time audio programming issues are discussed in detail in chapter

??. Examples of issues to be solved are multi-platform audio devices ac-

cess, communication between real-time and non-real-time threads, latency

reduction, jitter handling...

Some of the issues that the prototyping architecture introduces are re-

lated to the fact that we need to locate and bind unknown elements of two

two dynamically created structures. When programming an audio appli-

cations the developer has direct access to the objects to relate and their

interface. The prototyping infrastructure should discover which elements

are meant to be related. Moreover, in order to allow extensibility, the archi-

tecture should not limit the kind of elements to deal in both the processing

and the user interface sides.

1.4 Scope of the solution

The proposed architecture provides the following features:

• Building of full featured applications with a custom user interface

• Communication of any kind of data and control objects between GUI

and processing core (not just audio buffers)

• The prototype could be embedded in a wider application with a min-

imal effort

• Plug-in extensibility for:

– Processing units

– Graphical elements for data visualization and edition

– Data tokens types

– System connectivity back-ends (ASIO, JACK, OSC, VST, LADSPA...)
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The set of applications we want to support are real-time processing ap-

plications which has a simple application logic. That is, just the application

logic needed for starting and stopping a processing algorithm, configuring

it, connecting it to the system streams (audio, MIDI, files, OSC, plug-in

system...), visualizing the inner processing data and controlling parameters

while running.

Given that limitation, the architecture to define would not claim to build

every kind of audio application. For example, audio authoring tools, which

have a more complex application logic, would be out of the scope, although

the architecture would help to build important parts of such applications

and the work on this thesis should help to define abstractions that would

help to develop visual frameworks in the future. The architecture just will

claim building applications such as synthesizers, real-time music analyzers

or audio effects.

Also by ‘visual prototyping’ we are not referring to a complete visual

language that could allow build real-time system without programming. We

just meant that the developer should address just the novel processing and

interface components. Once all components are available, the full application

can be built with visual builders.

1.5 Methodology

1.5.1 Goals

We present here an overview of the goals of this thesis:

• Review the state of the art in software engineering tools to fasten the

development and criteria on how to evaluate them

• Review the state of the art of audio software engineering to get insight

on solutions to common issues on audio applications.

• Abstract a model to describe the internal structure of a audio appli-

cation so that such model could help to define the issues that need to

be solved.

• Define an architecture that would enable visual development of audio

applications
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• Iteratively implement it while addressing different use cases

• Provide a qualitative analysis on which are the benefits of using such

architecture and a review of the limitations

1.5.2 Process

An actual implementation of the architecture is needed to be able to evaluate

its feasibility and usefulness. As most authors in recent software engineering

literature suggest [?][?], early generalizations may lead to over-design. They

recommend iterative work on the implementation to get to a proper gener-

alization. Thus, the work presented in this thesis is the result of a iterative

process of refining by considering different use cases and addressing different

features in a incremental pace.

In this iterative process, several parallel activities have taken place (see

figure ??). While some activities sought the goal of having a more usable

framework, others dealt with coming up with the appropriate abstractions

and reusable constructs that can be reused beyond the framework. Two of

such abstractions are an object oriented meta-model for multimedia process-

ing, described in section ?? and more deeply in [?], and a pattern language

for data-flow systems, described in section ?? and more deeply in [?] and

[?].

1.5.3 Evaluation

Evaluation is a tricky problem in Software Engineering. An ideal environ-

ment would be having the same system developed in different ways just

changing the aspects of the process to be evaluated and comparing how

each aspect affects the development efficiency. That evaluation method is

not viable because building complex systems is expensive, and, even in this

ideal environment, we are not taking into account human factors that would

make two identical experiments differ. Human factors forces us to use an

statistical approach and, thus, evaluation would require more cases.

Because the clean room approach is not viable, the classical approach is

to analyze the development process of existing real projects. This approach

is very limited within the world of the proprietary software. The set projects

a researcher is able to analyze tends to be very limited due to corporate and

organizational boundaries and confidentiality requirements. Reproducing
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Figure 1.1: Parallel activities on the iterative inception process.
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results is even harder as it requires peer researchers to setup a similar set

of data. Moreover, accessible data on the development of such projects has

a high risk of bias as actors of the process tend to hide things that does

not work well. Fortunately, the large availability of open source projects

and the visibility they offer to their development process give us a chance

to obtain more significant metrics. Robles[?] addresses different ways of

exploiting such data sources in order to reach insightful conclusions about

the development and evolution of existing free and open source software.

The proposed evaluation method is to use the architecture to build sev-

eral audio and music applications. Some of them from scratch and some of

them reimplementations of existing open source software. Then we’ll eval-

uate the effectiveness of the architecture either by comparing the program-

ming effort to the original one when available, or applying some systematic

qualitative criteria which are given along the chapter ??.

But in order to rely in such evaluation, there are some aspects that

must be considered carefully. Most of the expected efficiency boosts rely on

components reuse. Of course, reuse is viable when the component already

exists. So we should provide a criteria to estimate the likelihood for a given

component to be already present and evaluate the development cost of such

component consistently.

Another aspect to consider is the fact that a reimplementation would

not need the exploration process the first implementation had. So, both

development processes won’t be comparable. The solution for this issue can

be either considering metrics that evaluates just the final artifacts, or trying

to reproduce the exploration process, which can be also valuable.

In summary, the proposed methodology is to iterate through the follow-

ing steps

• Analyze the development process of a set of existing open source audio

applications.

• Adjust the definition of the architecture so that would support their

construction.

• Implement such architecture.

• Implement the analyzed audio application by using the architecture.

8



• Compare development processes or final artifacts and extract conclu-

sions.

1.6 Summary of contributions

The proposed work would lead to the following outcomes:

• A survey on existing audio applications and an analysis on their main

traits and design issues to be solved.

• The definition of an architecture that would allow to develop real-time

audio and music processing applications.

• A concrete implementation of such architecture within the CLAM

framework.

• An implementation of audio related widgets for the Qt framework that

could be reused.

• Re-implementations of existing open source audio applications by us-

ing the implemented architecture.

• A systematic qualitative analysis of several facets of the tool.

• A quantitative analysis of the development process of a set of existing

open source audio software contrasted with the development process

that uses the architecture.

1.7 Thesis organization

This chapter has introduced the context of this work and it has set its goals

and methodologies.

Chapter 2 describes related work about tools and methods to make the

software development more efficient. It also explains how other authors have

faced the the specific issues of audio software engineering and some of the

tools that are available for such domain.

Chapter 3 does a domain analysis on the audio applications family of

systems. The goal is to obtain a set of abstraction and related engineering

concerns to be applied to analyse the engineering needs of a given audio

application.
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Chapter 4 describes the prototyping architecture at different levels of

detail.

Chapter 5 evaluates the architecture by analyzing how it performs in

several real use cases.

Finally, Chapter 6 includes conclusions, the main contributions and fur-

ther perspectives of research.
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Chapter 2

Related Work: Application

Development

This chapter reviews in the state of the art of application development and

more concretely in audio application development. First, we review several

general approaches that enable the efficient development of applications such

as the use of frameworks, visual languages or domain specific languages.

Then we introduce two concrete technologies such as data-flow languages to

build audio processing applications, and visual GUI builders. We also review

the state of art in the evaluation of such tools. Finally we review literature

about specific engineering concerns and existing development environments

for the audio domain.

2.1 The evolution of frameworks

Tools are one of the factors of the development process that can be modified

to get an impact on its efficiency. Frameworks are very valuable tools to

consider since they let you reuse both design and code. Roberts and Foote

[?] define a framework as “a set of classes that embodies an abstract design

for solutions to a family of problems”. Other definition of framework, which

emphasizes more the means than the goal is “a reusable design of all or

part of a software system described by a set of abstract classes and the way

instances of those classes interact”[?]. The later definition spots the fact

that frameworks are not just a collection of classes but also a design on how

they collaborate.
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The history of software frameworks is very much related to the evolution

of the multimedia field itself. Many of the most successful and well-known

examples of software frameworks deal with graphics, image or multime-

dia. The first object-oriented frameworks to be considered as such are the

MVC (Model View Controller) for Smalltalk [?] and the MacApp for Apple

applications[?]. Other important frameworks from this initial phase were

ET++[?] and Interviews. Most of these seminal frameworks were related to

graphics or user interfaces.

Roberts and Johnson [?] explain the evolution patterns of a development

framework. According to them, frameworks should follow certain evolution

which involves incremental abstraction and refinement. First stages of a

framework should consist in very few and simple abstractions from several

existing applications. On later stages, the abstraction would be so high that

the developer would be able to build a system just by using a domain specific

language or visual builder.

A good visual builder should allow a domain expert with no program-

ming knowledge to build a system just by drawing the components together

just by using graphical conventions of the domain.

2.2 Visual programming languages

A visual programming language (VPL), is a programming language which

uses relations and placement of objects in a 2D screen to articulate the

execution of programs as opposed to textual programming languages (TPL)

which uses linear text streams. Some illustrative general purpose VPLs are

ProGraph and LabView.

Often their superiority to text based programming languages is defended

with arguments such as:

Pictures are superior to tests in a sense that they are abstract,

instantly comprehensible and universal. [?]

Some critical authors call those claims the superlativist hypothesis (VPL

are better than TPL) and the accessibility hypothesis (information in a di-

agram is instantly comprehensible an universal). Menzies [?] and others

warn that those claims are based on intuition and lack of scientific crite-

ria. Menzies reports that studies comparing visual programming languages
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with textual programming languages often reach contradictory conclusions

in similar conditions.

An study of Green, Petre and Bellamy [?] rejected both claims. They

rejected the accessibility hypothesis by observing that novices found more

troubles reading a visual program than experts. They also rejected the

superlativist claim by demonstrating that for some tasks TPLs outperformed

VPLs. To explain why VPLs perform differently for different programming

problems, Green and Petre formulated the match-mismatch conjecture that

states that the efficiency of a visual language depends on how well it maps

the problem.

Moher et al [?] go further by stating that the effectiveness of a language

not only depends on the target program but also on which task is to be

done with the program. An illustrative example is forward versus backward

reasoning. Some notation could facilitate the forward reasoning, given some

inputs which is the output, but it could make backward thinking hard, which

are the inputs that gave that output. Backward reasoning is very useful for

some programming tasks such as debugging.

In a later study, Green and Petre [?] used a relation of different cog-

nitive dimensions used to evaluate notations[?] to evaluate visual and text

languages. Such dimensions were:

• Closeness of mapping

• Viscosity

• Hidden dependencies

• Hard mental operations

• Premature commitment

• Secondary notation

• Visibility

• Consistency

• Progressive evolution

The closeness of mapping is the distance between the domain and the

programming worlds. The need of using programming specific entities, forces

the programmer to think in programming terms instead of domain terms.
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The viscosity is the effort that user has to do to effect a small change.

It is normally measured as the number of primitive actions performed, but

as it is task dependant, it is hard to evaluate unless there is a clear trend.

They identify the layout as a source of viscosity in visual languages.

The hidden dependencies evaluates how a part of a program is affected by

the changes of another in a way that is not obvious to the programmer. For

example, function side effects. Green et al. notice that such dependencies

are harder to highlight on textual languages but that they also can be found

on visual languages.

The hard mental operations criteria evaluates how hard is to understand

a combination of primitives. For example, the amount of work to understand

a conditional expression could be different if we represent it as English text,

as a truth table or as a logic gates circuit. Also the kind of reasoning to

perform affects the amount of work.

The premature commitment criteria tells whether the language forces

taking decisions before the required information is available. For example,

visual languages tend to force the user to guess the layout of the final design.

The secondary notation criteria evaluates which are the alternative means

that programmers can use to communicate aspects of the program that are

not explicit on the language notation. For example, although they are not

required to, textual programmers indent to denote structure, insert blank

lines to group code or use naming conventions to denote aspects of the named

entities. Green spots the opportunities of visual languages on adding such

secondary notation but also notes that mastering secondary notations is

hard to novices.

The visibility criteria evaluates which is the required cognitive work to

make a required aspect of the program accessible. Total visibility is not

convenient but accessing a non-visible aspect should not be hard.

The consistency criteria evaluates how easy is to infer one part of the

language by knowing the other part. Consistency is a key aspect to facilitate

learning.

The progressive evolution criteria evaluates whether the programming is

able to test a part of the program before having it completed.

Of course, all those criteria are still subjective and very dependant on the

task and on the programmer skills. But at least they provide a systematic

and multi-faceted way of evaluating languages.
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Previously cited works concluded that the effectiveness of visual lan-

guages is dependant on the task. Burnett et al. [?] say that most visual lan-

guages, even being successful for the task, have to face what they called the

scaling-up problem. As the problems to solve get bigger and more complex,

several issues tend to appear when using visual languages. They identified

such issues and collected common solutions when available. The issues were

classified as representation issues or programming issues. Representation

issues include the availability of static representation, the effective use of

the screen, or the suitability of the documentation facilities. On the other

hand, programming language issues include procedural abstraction, interac-

tive visual data abstractions, type checking, persistence and efficiency.

On a later publication [?], Burnett describes how visual languages will

require, or will enable, the development of new software engineering tools.

She explicitly talks about new documentation and code comprehension tools,

and new testing, debugging and reusing tools.

My own opinion is that, textual languages are often specifications which

are implemented by several vendors who provide their own development

environment. The development environment is not part of the language but

affects a lot to its usability. Conversely, visual languages definition are often

coupled to the tool, and most of the previous concerns about the usability

of the language refer to such tool.

This coupling to the tool, leads us to a new drawback with visual lan-

guages. Languages coupled to a tool are often coupled to a single vendor.

The only rare case is UML and related standardization method, but UML

standard is not executable although some trends tend to use it as executable

specification [?].

2.3 Domain specific languages

Domain-specific languages (DSL), as opposed to general purpose languages

(GPL), are languages that are restricted to a concrete domain. Deursen et

al define them with the following statement:

A domain-specific language (DSL) is a programming lan-

guage or executable specification language that offers, through

appropriate notations and abstractions, expressive power focused

on, and usually restricted to, a particular problem domain. [?]
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The actual promise of DSLs is the focused expressive power. They allow

solutions expressed in the idiom and at the level of abstraction of the problem

domain. They are not usually focused on execution, instead they tend to

be declarative[?] on the facts of the domain. Some of the benefits of using

DSLs are:

• Domain experts can understand, validate, modify and often develop

DSL programs.

• DSLs capture domain knowledge directly so there is no specification

to program mismatch.

• DSLs allow optimization and validation at the domain level.[?]

But there also some drawback on their usage such as:

• It might not be a DSLs available for the target domain.

• There is a cost on designing, implementing and maintaining a DSLs.

• They need user training.

• Their use may imply an efficiency loss compared to hand-coded soft-

ware.

According to Deursen and Klint [?], the creation of a DSL typically

involves the following steps:

• Analysis:

1. Identify the problem domain

2. Gather relevant knowledge in this domain

3. Cluster this knowledge in a handful of semantic notions and op-

erations on them

4. Design a DSL that concisely describes applications in the domain

• Implementation

1. Construct a library that implements the semantic notions

2. Design and implement a compiler which translates DSL programs

to a sequence of library calls
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The key aspect of the process is the analysis. Neighbors [?] identifies

the role of the domain analyst which is similar to the system analyst but

instead of producing one single system is able to support the development

of families of related systems. This require expertise having built several

applications within the domain as a system analyst.

We can merge the idea of visual programming languages with the idea of

domain specific languages. Domain-specific visual languages should be able

to use visual domain specific notations to specify a family of programs. By

addressing a concrete family of programs and by using domain-specific no-

tations, the problem mismatch, introduced in section ??, could be reduced.

Also by using different language to specify different aspects of a program

could reduce the task dependant mismatch.

In the following sections we present two common visual approaches to

address different aspects of an audio application. On one side, data-flow

languages to address the processing aspect, and the user interface visual

builder to produce user interfaces.

2.4 Data flow languages

Data-flow models have a long tradition on system engineering. Signal pro-

cessing area does an extensive use of them.

Visual builders that follow the data-flow paradigm are often called data-

flow languages. Several of such data-flow languages exists for the audio

and music domain. Beside being close to signal processing experts domain,

data flow languages has more advantages. Firstly, being visual languages, a

developer can get, at a glance, insight of the structure of the system. Data-

flow languages also make more difficult to generate syntactically badly built

systems. The language that such syntax generates is large enough to express

a wide set of systems. Large interconnected systems are hard to understand

visually, but the black box idea enables grouping a subset of interconnected

subsystem as a subsystem itself and thus the implementation can be more

scalable. And last but not least, having strict interfaces between subsystems,

eases to reuse them in a different system.

On the other hand, data-flow languages just describe the data depen-

dencies. Procedural details of the modules and their semantics need to be

indicated using a secondary notation such as different iconic representation,
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naming, port coloring...

Amatriain [?] described a Metamodel for Multimedia Systems (4MS), an

object oriented model to model audio and music data flow systems. Arumi

[?] compiled a set of design patterns that addressed several design challenges

one can find when trying to implement data-flow systems on the audio do-

main.

2.5 Visual user interfaces builders

So, data-flow is successful on providing a design language for application

processing algorithms. What about building products up to the public?

Commonly, audio and music products need a user interface to give the user

control over the application and to provide feedback on what’s happening

on the system. So, that is a two fold function: control and visualization.

Often data-flow prototyping tools offer integrated controls and visual-

izations to plug into the data-flow. So, you might consider releasing the

data-flow prototyping tool as the product. But, that will blur the functional

intent of your product. Although this kind of interface could be perfectly

suited for power users, it gives too much access to the inners of your prod-

uct: User interface elements for data-flow building are adding noise to the

user interface elements that the user is intended to use, that is control and

visualization user interface.

A proper user interface can be prototyped visually. In fact, user interface

domain was one of the first domains to be provided of visual builders [?].

Visual interface building consists on visually setting the layout of the set

graphical interface elements and setting their static properties. Some limited

dynamic behaviour can be specified by using an event language [?]

This kind of prototyping shares a lot of the advantages with the data-

flow based prototyping for the processing core but for the user interface

domain. The resulting system is also a visual combination of the domain

entities, which can be extended by the developer.

But visual user interface builder does not solve the full application build-

ing. It just solves the layout of graphical elements, their static properties

and some responses to events that can be solved within the interface. Ap-

plication logic is to be implemented by hand using the low level language

the prototyping tool translates the prototype into.
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2.6 Evaluating tools

Most of the tools and techniques presented before promise some benefit on

the development process. But in the past some promising tools did not

succeed even they provided some clear benefit.

Myers et al. [?] analyzes past trends in user interface tools and identifies

the traits that made each trend successful or not. They state that such

traits can be used as criteria to foresee whether a current or future tool is

going to be successful.

One of the main criteria is the target problem. The key element to know

if a tool is at least promising or not is to analyze whether the target problem

is a key problem on development or not, and whether the tool address it

thoroughly and effectively. But that’s not the only criteria in order to make

the tool successful.

Other two important and related criteria are the threshold and the ceiling

of the tool. The threshold indicates how hard is to learn the tool. The

ceiling indicates how far you can go with it. The ideal tool would have a

low threshold and a high ceiling. But those two concepts are closely related.

When designing a tool often happens that by raising the ceiling we are also

raising the learning threshold and the other way around, when lowering the

threshold we are reducing the ceiling. This happens in a natural way as

the tool is likely to put more elements into the game in order to be able to

model a wider range of applications.

Myers observes that a cost-benefit analysis is not enough to justify a

high threshold. Most users will not get pass it. He also gives two means

to get high ceilings without raising the threshold too much: One is offering

a trap door, which does not affect the usability of the regular tool. The

other is offering an smooth path which allows progressive raising of both

the threshold and ceiling.

Other interesting criteria is the path of least resistance. This criteria

tells that a tool has more chance to succeed when eases more the proper

way of doing things than the dirty or unsuitable one. That applies to both

the resulting product and the development artifacts. For example, toolkits

made it easier to reuse than to build components from scratch and to have

a consistent look and feel, visual builders made it easier to separate the

application logic and the layout logic, and event languages made it easier to
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build mode free interface than modal ones.

The last but not least criteria is the moving target. Technologies evolve

fast and tools are reactive, the problem first appears and then someone

thinks on a tool to address it. Also mastering the tools is something that

may take long, so the target problem could have loose its importance before

a critical mass of developers effectively use the tool that address it.

They observe that, in the case of user interface tools, for some years

there has been an anomaly in this criteria due to the standardization of

the desktop user interface. This exceptional situation let the tools mature.

They warn that this situations is likely to change in the following years with

the appearance of the ubiquitous computing and recognition interfaces.

2.7 Audio Software Engineering

Developing audio and music software implies addressing some specific issues.

Extensive literature exists which analyzes the different software engineering

aspects of audio applications. This section does an overview on it.

Pennycook [?] describes the challenges of developing interfaces for mu-

sicians as they must support creativeness instead of coercing it. He does

a survey on several user interfaces for audio and music software. The re-

viewed software is now obsolete but some of the insights are still valid. He

identifies several categories: composition and synthesis languages, graphic

score editors, performance instruments, digital audio processing tools, and

computer aided instruction on music systems.

In several papers, Dannenberg et al. [?] [?] [?] [?], analyzes software

engineering concerns in real-time multimedia systems including the handling

of incoming events, timing, low latency and other more general engineering

concerns such as portability, reliability and ease of development.

Real-time systems are commonly regarded as the most com-

plex form of computer program due to parallelism, the use of

special purpose input/output devices, and the fact that time-

dependent errors are hard to reproduce. [?].

Dannenberg notes that the application should not wait for input as time

and data dependent computations must take place, so he proposes a event

driven architecture which inverts the control flow: instead of the program
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asking for incoming events, the systems calls the program whenever an event

comes. This introduces new concerns on preemption and multi-threading

communication. He also spots the problem of memory management, as the

costs of standard memory allocation and deallocation is not deterministic.

He proposes preallocation of memory and an algorithm to handle such mem-

ory in real-time conditions.

Hardware abstraction and portability is other source of engineering is-

sues. Bencina [?] abstracts common services to be provided by audio devices

under the PortAudio API. Scavone [?] offers similar services under a object

oriented API.

Audio analysis software have different needs than real-time software.

While not having to deal with real-time restrictions they have to deal with

more complex processing flow which is harder to generalize. Tzanetakis

and Cook [?] describe architectural needs of audio analysis applications for

audio information retrieval (AIR) presenting a general architecture to fit

such needs.

2.8 Development environments for the audio do-

main

This section will give a brief survey of existing frameworks and environments

for audio processing. Most of these environments are extensively reviewed

in [?].

The current arena presents a heterogeneous collections of systems that

range from simple libraries to full-fledged frameworks and development en-

vironments. Unfortunately, it is very difficult to have a complete picture of

the existing environments in order to choose one or decide designing a new

one.

In order to contextualize our survey we will start listing the relevant

environments not only for audio but also for image and multimedia:

• Multimedia Processing Environments: Ptolemy [?], BCMT [?], MET++

[?], MFSM [?], VuSystem [?], Javelina [?], VDSP [?]

• (Mainly) Audio Processing Environments: CLAM [?], The Create

Signal Library (CSL) [?], Marsyas [?], STK [?], Open Sound World
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(OSW) [?], Aura[?], SndObj [?], FORMES [?], Siren [?], Kyma [?],

Max [?], PD[?]

• (Mainly) Visual Processing Environments: Khoros-Cantata [?] (now

VisiQuest), TiViPE [?], NeatVision [?], AVS [?], FSF [?]

If we now focus in the Audio field, we can further classify the environ-

ments according to their scope and main purpose as follows:

1. Audio processing frameworks: software frameworks that offer tools and

practices that are particularized to the audio domain.

(a) Analysis Oriented : Audio processing frameworks that focus on

the extraction of data and descriptors from an input signal. Marsyas

by G. Tzanetakis is probably the most important framework in

this sub-category as it has been used extensively in several Music

Information Retrieval systems [?].

(b) Synthesis Oriented: Audio processing frameworks that focus on

generating output audio from input control signals or scores. STK

by P. Cook [?] has already been in use for more than a decade

and it is fairly complete and stable.

(c) General Purpose: These Audio processing frameworks offer tools

both for analysis and synthesis. Out of the ones in this sub-

category both SndObj [?] and CSL [?] are in a similar position,

having in any case some advantages and disadvantages. CLAM,

the target framework of the experiments in this thesis, should be

included in this sub-category.

2. Music processing frameworks: These are software frameworks that in-

stead of focusing on signal-level processing applications they focus

more on the manipulation of symbolic data related to music. Siren

[?] is probably the most prominent example in this category.

3. Audio and Music visual languages and applications: Some environ-

ments base most of their tools around a graphical metaphor that they

offer as an interface with the end user. In this section we include

important examples such as the Max [?] family or Kyma[?].
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4. Music languages: In this category we find different languages that can

be used to express musical information ( note that we have excluded

those having a graphical metaphor, which are already in the previous

one). Although several models of languages co-exist in this category,

it is the Music-N family of languages the most important one.Music-N

languages languages base their proposal on the separation of musical

information into statical information about instruments and dynamic

information about the score, understanding this score as a sequence

of time-ordered note events. Music-N languages are also based on

the concept of unit generator. The most important language in this

category, because of its acceptance, use and importance, is Csound [?].

2.9 Summary, current directions and hypothesis

In this chapter we reviewed existing literature in several areas. On one

side we considered means to make the development of general applications

more efficient. We observed that frameworks and domain-specific languages

succeeded on addressing a concrete domain, while visual language just give

some benefit if are suited to the target program and to the development

task. We reviewed literature about two domain-specific visual languages:

data-flow systems and visual interface builders. We saw that they performed

their task perfectly but there is a gap between them that still is not covered

by such tools.

A first hypothesis of this thesis is that we can formulate an architec-

ture which fills the gap between both visual builders to build a full audio

application without text programming.

On the other hand, we did a review on existing literature about the con-

crete engineering concerns of audio applications and how to address them.

A second hypothesis of this thesis is that such issues can be systemati-

cally addressed and in some cases automatically covered given a high level

description of the application logic requirements.
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Chapter 3

Audio Applications

This chapter does a domain analysis on the family of systems that we call

audio applications. This analysis covers the set of applications to be mod-

elled visually by the prototyping architecture, real-time audio applications,

but also extends to some other applications whose development could benefit

from such prototyped components.

To get into that point, we analyze common and specific aspects of audio

applications, and their related implementation issues. Such aspects range

from data exchanges with the outside world, data and time dependencies,

in-memory representations, user interface... Then, to probe the validity of

such abstraction, we use them to describe some common archetypes of audio

applications. Finally we define, based on such abstractions, which are the

target applications of visual prototyping and how visual prototyped compo-

nents could become the building blocks of some other audio applications.

3.1 Environment data sources and sinks

This section describes an abstraction how an audio application sees the

environment provided by the system.

Normally an audio application is such because it deals with some audio

related data sources and sinks: soft synthesizers receive MIDI events coming

from other sequencer application, and they send an audio stream to an audio

device, while a karaoke application reads time aligned lyrics from a file and

displays it with synchronized coloring while it reproduces the song. Audio

applications may interact with different sources and sinks of such audio
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related data. Each one has different requirements on how to be handled:

• Audio streaming

• Asynchronous control events (MIDI, OSC...)

• Serialized information (audio files, meta-data...)

img/SystemInterfaces.png

Figure 3.1: Audio applications takes and feeds data in different forms with
the system and with the other applications. Communication have different
requirements depending on the type of interface.

3.1.1 Audio Streams

The most common data communication of audio application with the out-

side world are audio streams. Traditionally, audio streams directly come

from (or go to) the audio device driver offered by the system. See figure

??. Several programming interfaces for audio devices are available. Most
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of them are platform dependant such as ALSA (Linux), OSS (Unix), Au-

dio Core (MacOs), WMME, DirectSound, ASIO... Some libraries, such as

PortAudio[?] and RTAudio[?], provide a cross-platform view of them all

by abstracting common features such as device enumeration, selection, and

setup.

img/AudioStreamsDeviceDriver.png

Figure 3.2: Device drivers audio streams: Traditionally, audio streams are
provided by system device drivers.

A special kind of application, the audio plug-in, does not take the audio

streams from audio devices but from a host application. An audio plug-

in is an independently distributed library that can be loaded by any host

application. See figure ??. The audio plug-in concept had been used by

several audio software as a way of extending their capabilities. The concept

gained popularity with the publication of API specifications such as VST

that allowed not just developing plug-ins but also hosts applications that

could load such plug-ins, fostering the reuse of plug-ins across applications.

After VST, many other standards appeared such as the free software based
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LADSPA and DSSI, or the Audio Units standard on Mac.

img/AudioStreamsHostPlugin.png

Figure 3.3: Host application is the audio stream provider of the audio plug-
ins it loads.

Plug-ins have an asymmetrical relation with their host. Conversely,

inter-process audio communication standards such as JACK[?] enable pear-

to-pear communications among applications: Any conforming application

can use any other as sink or source for its audio streams. See figure ??.

This allows the connected applications overcome the inherent limitations of

being a plug-in. They can have their own application logic and they can

communicate with several applications, not just the host.

Other application use the network as source or sink of audio streaming.

Internet audio broadcast applications are examples of application using the

network as audio sink. Also most modern audio players are able to play

streaming audio coming from the network. Network streaming has to deal

with the fact that a given audio frame is not guaranteed to get its destiny

in a bounded interval of time. Some internet protocols such as RTP[?] deal
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img/AudioStreamsInterApp.png

Figure 3.4: Inter-application audio communication APIs allow use other
applications as source and sinks for audio streams.
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with such limitations but other applications need to reuse regular proto-

cols. Software layers such as GStreamer 1 provide a layer that abstracts

the idiosyncrasy of such sinks and sources offering application a continuous

stream.

Audio streams are accessed through an application programming inter-

face (API). Two common styles of API’s are commonly used. In a blocking

audio API, the application ask for reading or writing an audio chunk and

blocks until the input audio is available or the output audio is required and

fed into the device. Of course, the audio application must handle other ac-

tions while waiting for the devices, so normally the audio is handled by an

independent thread. Callback or event based API’s, instead, tell the system

to call a given application function (the callback or the event handler) when-

ever the audio stream is available to be accessed. PortAudio, RTAudio, and

ALSA support both styles of API’s.

One of the main traits of audio streams is that they provide or require

data at a fixed pace. If data is not read or written at such pace, the appli-

cation misbehaves. The time slot is equivalent to the time duration of the

data that is to be written or read (see figure ??). Read over-runs happen

whenever the application is not able to read a data source within its time

slot while, write under-runs happen whenever the application is not able

to write into a data sink within its time slot. Both are named generically

x-runs and they normally are perceived as hops or clicks on the sound.

Even when the mean throughput of the CPU is enough to execute the

whole processing in less time than the audio duration, the processing may

require CPU peaks that go beyond the time slot as in figure ??(b). Also,

in systems not enabled for real-time, other threads, processes or even the

operating system, may take the time slot, not letting the audio processing

to be done on time (figure ??(c)). In both cases, the effect of x-runs can

be minimized by adding extra buffering. Figure ??(d), shows how buffering

absorbs the x-runs at the cost of latency, that is, the time period since an

input event happens until one listens its effects on the output. But as figure

??(e) shows, the number and the relevance of the x-runs to be absorbed

depends on the size of the buffering which in turn increases the latency. For

applications not requiring low latency, buffering can be very high. But as

discussed later, on some applications high latencies are a problem and a

1http://gstreamer.freedesktop.org/
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img/IdealRealTimeLatency.png

Figure 3.5: Real-time processing requires the processing of a block to be
executed within the duration of such a block.
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img/XRuns.png

Figure 3.6: Time-lines for (a) a well behaving real-time execution, (b) x-run
due to a processing peak, (c) x-run due to non-real time scheduling, (d) one
period buffering adding latency but absorbing x-runs c and d, and (e) one
period buffering not able to compensate several adjacent x-run conditions.
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trade-off is needed.

In this section, we have been discussing about audio streams. But, of

course, most of those considerations can be extended to any synchronous

data transfer not being audio. For example, a visualization plug-in may

receive from the host player spectra to be visualized at a constant pace.

3.1.2 Asynchronous control events

A different, but also very common, data transfer between audio applications

and the outside world are asynchronous control events such as MIDI events

[?] sent or received by external MIDI devices, or OSC [?] messages sent or

received by local or remote applications.

They are asynchronous because in contrast with audio streams, they are

not to be served in a continuous pace. Receiving audio applications don’t

know before hand when events will happen. This implies a different kind of

problems. Control events may come in bursts, so, when an application also

has to deal with real-time synchronous stream, we can get into problems if

serving a control event is too expensive. Also, while you can implicitly know

the time position of audio streams, just by their ordering and the sampling

period, there is no implicit way to know the timing of control events.

Whenever an audio application deals with control events, latency is a

concern in any dependant audio stream. For example, a MIDI controlled

software synthesizer will misbehave if a note starts too much time later than

the user pressed the key on the MIDI keyboard. Live performance is hardly

affected by this delay. Brandt and Dannenberg consider acceptable latency

of some commercial synthesizers between 5 and 10 ms which is comparable

to delays due to acoustic transmission [?].

An additional concern with control events is the jitter. When we have

two dependant input and output audio streams, the latency is constant and

depends just on the buffering sizes 2. When an output audio stream depends

on an input control, latency may be variable producing an effect called jitter

(see figure ??). Some studies reported the minimal noticeable jitter on a 100

ms rhythmic period is 5 ms[?], 1 ms [?] and between 3 and 4 ms [?]. Of

course, not all events has the same effect on the audio. The ones in the

studies were onsets of a percussive sound. Jitter perception in other kind of

2It also can be variable due to poorly designed audio devices.
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events such as continuous control may be less sensitive.

img/JitterTimeLine.png

Figure 3.7: Different latencies on serving control events results on control
jitter.

Dannenberg describes a solution to the jitter problem [?]. If we can get

time-stamped events from the device, we can set a compromise maximum

latency, and applying all the events with constant delay from the time-stamp.

Time-stamping also gives problems when the time-stamp clock and the clock

reference for real-time audio does not match. Adriaensen [?] proposes a

solution to correct the clock mismatch.

3.1.3 File access

Another important outside information flow is the one involving files: Mainly

audio files but also files containing meta-data, configuration, sequencing

descriptions...

File access has two main traits. On one hand, and in contrast to audio

streams and control events, they do not impose any real-time or timing re-
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strictions on how to access data. The application can access file information

without any time order restriction, and it can spend many time as it needs

to do a computation related to a time slot. On the other hand, accessing

files is not real-time safe, in the sense that there is no guaranties of reading

or writing a file block within a bounded period of time. Thus, if a real-time

process must access a file for reading or writing, it will need intermediate

buffering, and dealing the file access in a different thread or after the real-

time task in blocking API’s. In this case, the buffering does not add latency

to the output as file access is not restricted in time.

In summary, if we just deal with files, none of the previous real-time

concerns apply, but as we relate them with data sink and sources imposing

real-time restrictions we need to separate them with a buffer.

3.2 Real-time and off-line execution

Data and time dependencies an application has on external sinks and sources

limit the kind of processing the application is able to do. Also, the processing

an application is required to do, limits the data and time dependencies the

application can have on external data sinks and sources.

For instance, consider an effect plug-in (figure ??). An effect plug-in con-

tinuously takes sound coming from an input audio stream, modifies it and

sends continuously the resulting sound to an output audio stream. Time-

data dependencies of such architecture forbids the plug-in to do any trans-

formation that requires information from the future of the stream. It is

limited to streaming processing. A very simple streaming process is an am-

plification effect which multiplies every sample by a constant. No future

data is required to apply the amplification to a sample.

On the other hand, audio normalization is a very simple example of

transformation requiring future data, a non-streaming processing. Normal-

ization consists on applying an audio the maximum gain without clipping.

Applying the gain is a streaming processing but to know the gain you need

to know the maximum level which might be beyond the current processed

audio sample. Thus, the full audio excerpt must be analyzed before we can

compute the output of the first sample. This is incompatible with the timing

and data dependencies imposed by the audio plug-in architecture. 3

3Notice that internal application buffering could add some limited look-ahead and
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img/ExecutionModesFXPlugin.png

Figure 3.8: Data-time dependency in an effect plug-in
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img/ExecutionModesAudioEditor.png

Figure 3.9: Data-time dependency in an audio editor. The internal au-
dio representation breaks data-time dependency between audio devices, en-
abling non-streaming algorithms but disabling real-time processing.
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To execute a normalization we should have to relax time-data dependen-

cies between input and output audio streams. For example, an audio editing

tool (figure ??), can apply a normalization by doing it off-line. Off-line ex-

ecution means that the execution of the process is not bound to any source

or sink with real-time restrictions. To achieve that, the audio editor makes

use of in-memory representation of the full audio. In-memory representation

offers random access to time associated data. File access also would play the

role, as explained in section ??, but, it would need be on a different thread

and communicating to the real-time playback using a ring buffer as in figure

??.

img/ExecutionModesFilePlayer.png

Figure 3.10: Data-time dependency in an file player. File reading is isolated
in a different thread using a buffer to avoid file system access to block the
throughput. This buffering has no effect on real-time latency.

We can get more insight from the normalization example. The com-

extend the future scope at the expense of latency. But this is not enough to solve the
normalization problem since we need to know the full excerpt.
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putation of the normalization factor (the inverse of the maximum absolute

sample value) can be computed in streaming. Being streaming could mean,

for example, that it could be computed within the audio capture process.

The process has no frame a frame output but a summary output. But still

the output can be computed in a progressive way.

On the other hand, given the normalization factor, applying the gain

is also a streaming process. We can see that summary computations can

be streaming processes, but processes with dependencies on summary com-

putations can not be streaming. We can see also that some non-streaming

processes can be expressed by a set of streaming processes communicating

summary outputs.

One conclusion of that is that if we have a way of expressing streaming

algorithms, such as data-flow systems where the tokens are at frame level,

some non-streaming algorithm could be built by connecting streaming algo-

rithms which share tokens at song level. This is a useful feature to be able

to reuse components built for a real-time system in an off-line system.

Like audio streams, input control events must be applied on time and

output control events must be sent on time. So dependencies on asyn-

chronous control events also imposes streaming processing.

3.3 Processing multiple audio items

Not always the dimension driving the execution of an audio related process is

the time. Often, the main driving dimension is the audio item, meaning for

example a song within a play list or an audio sample in a sample collection.

Some examples for such processing is:

1. A multimedia player computing the normalization factor for all the

files in the collection.

2. A learning algorithm accessing a lot of files to learn some concept.

3. A song version aligner taking two versions and locating the correspon-

dence points.

4. A similarity algorithm comparing full collections with a reference item.

5. A collection visualization tool ??, computing the distance between

each pair of audio items.
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Notice that every example has a different access pattern on the multiple

items. 1 and 2 just applies some off-line process to a sequence of items.

While 1 has an output for each file (the gain), 2 has an overall output for all

the collection (the learned model). Notice that this has some parallelisms

on summary computations along time. Examples 3, 4 and 5 have a core

process which has two input items, and the main difference among them is

how the items are feed to that core process.

3.4 Graphical user interface

The graphical user interface is an actual part of the application. But if we

consider it as such, related information flow with the outside would consist

just on drawing primitives and low level input events which are not attrac-

tive for this discussion. If we consider the full interface as an outside element

(with some privileges), information flow will consist in audio relevant infor-

mation, and this will enrich the description on what is happening with audio

applications.

In real-time systems, a sane design places the GUI and the audio pro-

cessing in separate threads. Having the GUI in a low priority thread helps to

meet the real-time requirements by allowing the real-time processing thread

to pop up every time it is required. Of course thread separation requires

inter-thread communication. In the case, of real-time applications, such

inter-thread communication must be lock-free for the real-time thread. Val-

ois describes several lock free structures [?]. The commonly used one for

thread communication in audio is the lock-free FIFO queue by Fober et al.

[?] [?].

In off-line systems, thread separation is also useful because off-line pro-

cessing may require too long periods in which the GUI would not respond.

But thread separation is not the only solution for off-line systems. The

alternative can be a rendez-vous policy: periodically the processing tasks

let the user interface to respond any pending incoming user interface event.

This simplifies the system not having to deal with thread management and

inter-thread communication issues.

User interaction is closely related to the application logic. We identified

several archetypical user interaction atoms. Depending on the application

logic, several of those atoms will be required, and each interaction atom will
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bring its own implementation concerns. The user interaction atoms are:

• Instant data monitoring

• Real-time control sending

• Transport control and feedback

• Visualization of data along time

• Edition of data along time

• Visualizing or managing audio items collections

• Configuration and setup

Following sections analyze the traits of each interaction atom and its

implementation requirements.

3.4.1 Instant data monitoring

Figure 3.11: Examples of instant data monitoring: XMMS visualization
plug-ins taking instant PCM and spectrum data.

Often audio applications need to display some data that is tied to an

instant of the streaming audio. The vu-meter on an audio recorder applica-

tion, or oscilloscopes and spectrum views on multimedia players (figure ??)

are common examples.

The common trait of such views is that they require regular updates

of information coming from the processing thread. Thus, a thread safe

communication is needed.
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Also, visualizing every processing data is not required. Indeed is not

even feasible as the processing token cadence is at the order of 10ms and

the screen retrace at the order of 100ms. This, and the fact that the reading

thread has no real-time constraints, will allow us to use a very simple thread

safe communication mechanism instead of the typical lock free structures.

Such mechanism is explained with more detail at section ??.

3.4.2 Real-time control sending

Figure 3.12: Some control knobs in amSynth, a software synthesizer.

A very common user interface functionality in audio applications is to

send asynchronous control data that modifies processing in real-time. For

instance, the knobs of a real-time software synthesizer, or the mixer slider

of a DAW4 which sets the recording gain of an input channel.

Such events coming from the interface should be taken as they where a

real-time asynchronous event source. The problem here is that the latency of

user interface events is huge because the user interface is in a non-real-time

priority thread. Moreover such latency is very variable, because it heavily

depends on the queue of graphical events to be served and that causes jitter.

Often user interface events are not time stamped so it is difficult to apply

them a constant latency to avoid that jitter. And when they are time-

stamped they often use a different clock than the audio clock so the drift

4DAW stands for Digital Audio Workstation, instances are Ardour, Cubase, ProTools...
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should be compensated.

3.4.3 Transport control and feedback

A set of user interactions affect the time the audio application is handling.

Simple transport actions such as play and stop but also moving the play-

head of an audio view or setting cue points, play regions and loops in a time

line.

Figure 3.13: The transport control and feedback interface in Ardour 2.

Figure 3.14: Detail of the Ardour 2 time bar. The red triangle is the play
head indicating the currently playing position. The blue triangle is the
cue position where the play head goes back when the playback ends. Loop
defines a region to play and punch the region where the saving is active.
Range and position markers let save them for later reuse.

At the same time, audio applications often gives feedback of the current

transport status for example by moving the play head position, a transport

indicator or by displaying the current time.

Transport interactions have sense when performing real-time tasks. But

they also have their counter part in off-line processing. Play and stop have

similar requirement to launching and aborting an off-line processing. Also, a

progress indicator may have very similar behaviour to a transport indicator.

But off-line execution might not be a linear time execution so in this case

progress indicator might be something different than time.

When more than one audio item are involved, often audio item change

is another transport control interaction for controlling and having feedback

on. Transport changes can be handled in a similar way control sending is
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done. The specifics for transport is that such interaction may need more

interaction than simply sending events to the processes.

3.4.4 Visualization of data along time

Non-Instant data-time visualizations display data bound to time along the

time. The most clear example is waveform visualization but also spectro-

grams or even the structural representation of a song. Such visualizations

need a data source that is not real-time such as file access or in-memory

representation.

Being just visualization the only interaction with the audio application

are updates when other process changes such data.

When programming such views, other process modifying the in-memory

representation could be an issue, but as the interface thread does not modify

the representation, normally lock-free communication mechanism are not

needed.

Figure 3.15: Several views from Audacity: Spectrogram and waveform.

3.4.5 Edition of data along time

Another common interaction between the GUI and the application is direct

manipulation of time related data. For example, placing and editing notes

in an score editor, arranging patterns in a sequencer or placing and moving

waves along tracks in a digital audio workstation.

In edition, concerns applied to non-instant data-time visualisation also

applies here: They require in-memory representation of the data, and data

updates to the visualization. Besides that, edition is not just passive and
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Figure 3.16: Sonic Visualisers presents static data along the time in many
different ways.

it also modifies the in-memory representation, such changes could interfere

with some running real-time or off-line process. Again, lock-free thread

communication is needed.

Figure 3.17: Hydrogen drum machine allows editing when the events will
happen along the time.

3.4.6 Managing multiple audio items

Often audio applications have to deal with a collection of audio items and

offers the user views to visualize or manage such collection. Simple examples

could be a play list editor (figure ??) or a sample collection browser. But

such views could be more elaborated [?] as shown in figure ??.

Also applications has views or edition interface for information related

to a single audio item as a whole. For example, an application could allow

to edit the ID3 tags of a song or adding custom labels. It could also display

context information: artwork, artist biography and other meta-data. Such

information is time independent, those components just need to know when
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Figure 3.18: Amarok multimedia player showing the collection browser (left)
and the play list editor (right).

Figure 3.19: Three dimensional interface for exploring collections
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they item information must be feed.

Because audio items visualization and management doesn’t impose any

real-time constraint, this kind of interaction is feasible for web applications.

Some illustrative web applications dealing with audio items are Foafing The

Music[?]5, Last FM 6, and Music Brainz 7.

3.4.7 Configuration and setup

Besides multi-item interactions, other set of interactions that are time inde-

pendent are the ones for configuring and setup the application. For exam-

ple, setting up a process before launching it, or setting up audio and event

streams.

3.5 Audio application archetypes

This section identifies some of the functional roles of existing and foreseen

audio applications, and describes them in terms of data transfers with their

environment, internal representations and execution modes. The goal is to

demonstrate that the former abstractions are enough to describe the internal

application structure of a relevant group of audio applications.

The roles described below are very abstract. Actual audio software may

be a combination of several of those roles.

3.5.1 Software synthesizers

Software synthesizers generate sound in response to incoming events. The

application logic of this kind of software requires very few interactions with

the user:

• Setting up the sound by controlling parameters, sound banks, presets...

• Receiving control events from the GUI (when available).

The main process of a software synthesizers is real-time constrained by a

link between incoming control events stream and the audio output stream.

Thus, events should be time-stamped and be applied with a constant delay.

5http://foafingthemusic.iua.upf.edu
6http://www.lastfm.com
7http://musicbrainz.org.
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Some software synthesizes deal with input coming from the user interface.

Such input events as explained in section ?? need an special care.

Also, the synthesizer could have some instant view of the produced audio.

Figure ?? shows a software synthesizer called Salto which displays some

instant views related to the produced sound.

Figure 3.20: Salto, a software synthesizer developed at the UPF, which uses
spectral models to synthesize sax and trumpet sounds.

Off-line synthesizers also exist but they are not as common as real-time

ones. They are used when real-time rendering is not feasible, for example

when complex generation models are used, such some physical modeling

algorithms. In this case the control events come in a file representations.

For example, in CSound the sound generator setup comes in the orchestra

file while the control events are specified on the score file. MIDI files are

also common event source for off-line synthesis.

3.5.2 Sound effects

Sound effects take the audio input and perform modifications to produce an

output. They share most characteristics with sound generator but they also
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must deal with the input stream which is real-time linked with the output.

Recent audio effects tend to be audio plug-ins as this makes them more

reusable.

Off-line processing is more common in processor than with sound gen-

erators. Nice examples of off-line effect processor are ecasound8 and SoX
9.

3.5.3 Sound analyzers

Sound analyzers take some input sound and they extract a different represen-

tation. Such representation could have different uses. Real-time analyzers

are used to give visual feedback on an audio stream. They are also used

as control mean in performances. For example, we could detect the chords

of the audio in order to perform an accompaniment arpeggio. This kind of

tasks require real-time restrictions between the input and the output data.

Typical sound analyzers require few interaction:

• Analysis parameter setup

• Output visualization

Off-line sound analyzers are more frequent than real-time ones often sim-

ply because the processing load is to heavy for real-time requirements, but

also because non-streaming processing is needed. For example, some anal-

ysis done in music information retrieval need having a global view of the

excerpt or they have dependencies on summary results. Also music infor-

mation retrieval systems (described below) require the output of analysis

performed to many audio items, and such a batch analysis is done off-line.

3.5.4 Music information retrieval systems

Music information retrieval systems deal with a lot of audio items. In order

to deal with such amount of audio material they use summarized information

taken with some batch analysis process. So the abstractions on supporting

multiple audio items in processing (section ??) and interface (section ??)

can be applied to off-line analysis for music information retrieval.

8http://eca.cx/ecasound/
9http://sox.sourceforge.net/
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3.5.5 Audio authoring tools

Audio authoring tools are applications such as Sweep, Audacity, GoldWave,

CoolEdit... They respond to the schema previously shown on figure ??.

They have an in-memory representation of the audio and perform off-line

processing to it.

Common interactions in this kind of software are:

• Recording audio

• Loading and saving files

• Transport management (play, stop, range selection...)

• Launching and cancelling off-line processes

• Playing audio

3.5.6 Sequencers

Sequencers are programs that allow the users to edit a representation of the

structure of a song. Such structure contains data which is used to control

internal or external sound producers, typically a synthesizer. They often

have a recording mode to input events from an external device such a MIDI

keyboard.

Free software applications that includes such a role are Rosegarden,

MuSe, NoteEdit, Hidrogen, CheeseTracker... All those application use differ-

ent paradigms on how the user edits the structure: score, piano role, pattern

sequencer, tracker... Even thought, the concerns on edition are nearly the

same.

Sequencers have to deal with several user interactions:

• Selecting or configuring the sound producers.

• Recording and editing events into the song structure

• Edit the song structure

• Transport control

This software has an in-memory representation of the events along the

time. In normal playback, the real-time constraints apply to the control
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sending. In-memory representation of the events enables using a forward

scheduling. In recording mode, if available, often the input events are re-

quired to be forwarded to the output so they can have effect on the sound

producer and provide feedback to the performer user. Because that, in that

case, there is a real-time link between received and sent control events.

3.6 Real-time audio applications

Previous section has provided some insight on the inner structure of several

archetypes of audio applications. In this section, we give deeper insight

on the subset of real-time audio applications: How can they be modelled

in a general way, which roles can they perform, and which are the main

implementation concerns. We also explain how components of a real-time

audio applications can be reused in other contexts.

Figure ??, is a generalization of the family of applications that we call

real-time audio applications. That is the set of applications whose visual

building is addressed in this work. Such applications include a single stream-

ing process that may deal with:

• several input and output audio streams,

• several input and output event streams (MIDI, OSC...), and,

• several input and output file streams.

The application could provide user interface for

• controlling transport (start, stop the process and seek on the file

sources,

• having feedback on the transport state,

• instant data visualization,

• sending control events from the interface,

• setting up the sinks and sources to deal with (not in the figure).

This description fits the needs of some of the roles described on the

previous section: real-time software synthesizers, real-time sound effects,

and real-time audio analyzers.
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img/RealTimeApplicationModel.png

Figure 3.21: A generic schema of a real-time application. The application
contains a single streaming process which may take and send data from
and to audio streams, control event streams or files. The application inter-
face may provide instant data visualization, GUI control event sending and
transport control and feedback.
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Some other application archetypes such as authoring tools, sequencers,

music information retrieval system and off-line systems are outside this de-

scription. The key features that make them out are:

• Non-streaming processing

• In-memory representations

• Multiple audio item processing

• Any other application logic that is more complex than binding to ex-

ternal streams, starting, stopping, control the transport on file based

streams, sending control events and visualizing instant data.

Anyway, in section ??, we explain how components built with the proto-

typing architecture can be helpful to build applications outside this scope.

3.7 4MPS Meta-model

This section goes into the details of the streaming processing element of the

real-time application schema shown in the figure ??. We describe a domain-

specific meta-model called 4MPS. 4MPS is the conceptual framework for the

data-flow language to be used in the prototyping architecture for the audio

processing.

The Object-Oriented Metamodel10 for Multimedia Processing Systems,

4MPS for short, provides the conceptual framework (metamodel) for a hier-

archy of models of media processing systems in an effective and general way.

The metamodel is not only an abstraction of many ideas found in the CLAM

framework but also the result of an extensive review of similar frameworks

(see section ??) and collaborations with their authors. Therefore the meta-

model reflects ideas and concepts that are not only present in CLAM but

in many similar environments. Although initially derived for the audio and

music domains, it presents a comprehensive conceptual framework for media

signal processing applications. In this section we provide a brief outline of

the metamodel, see [?] for a more detailed description.

10The word metamodel is here understood as a “model of a family of related models”,
see [?] for a thorough discussion on the use of metamodels and how frameworks generate
them.
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The 4MPS metamodel is based on a classification of signal processing

objects into two categories: Processing objects that operate on data and

control, and Data objects that passively hold media content. Processing

objects encapsulate a process or algorithm; they include support for syn-

chronous data processing and asynchronous event-driven control as well as

a configuration mechanism and an explicit life cycle state model. On the

other hand, Data objects offer a homogeneous interface to media data, and

support for metaobject-like facilities such as reflection and serialization.

Although the metamodel clearly distinguishes between two different kinds

of objects the managing of Data constructs can be almost transparent for

the user. Therefore, we can describe a 4MPS system as a set of Processing

objects connected in graphs called Networks (see Figure ??).

Figure 3.22: Graphical model of a 4MPS processing network. Processing
objects are connected through ports and controls. Horizontal left-to-right
connections represents the synchronous signal flow while vertical top-to-
bottom connections represent asynchronous control connections.

Because of this the metamodel can be expressed in the language of graph-

ical models of computation as a Context-aware Data-flow Network (see [?]

and [?]) and different properties of the systems can be derived in this way.
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Figure ?? is a representation of a 4MPS processing object. Processing

objects are connected through channels. Channels are usually transparent

to the user that should manage Networks by simply connecting ports. How-

ever they are more than a simple communication mechanism as they act

as FIFI queues in which messages are enqueued (produced) and dequeued

(consumed).

Figure 3.23: 4MPS Processing object detailed representation. A Process-
ing object has input and output ports and incoming and outgoing controls.
It receives/sends synchronous data to process through the ports and re-
ceives/sends control events that can influence the process through its con-
trols. A Processing object also has a configuration that can be set when the
object is not running.

The metamodel offers two kinds of connection mechanisms: ports and

controls. Ports transmit data and have a synchronous data-flow nature while

controls transmit events and have an asynchronous nature. By synchronous,

we mean that messages are produced and consumed at a predictable —if not

fixed— rate.

A processing object could, for example, perform a low frequency cut-off

on an audio stream. The object will have an input-port and an out-port

for receiving and delivering the audio stream. To make it useful, a user

might want to control the cut-off frequency using a GUI slider. Unlike the

audio stream, control events arrive sparsely or in bursts. A processing object
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receives that kind of events through controls.

The data flows through the ports when a processing is triggered (by re-

ceiving a Do() message). Processing objects can consume and produce at

different rates and consume an arbitrary number of tokens at each firing.

Connecting these processing objects is not a problem as long as the ports

are of the same data type (see the Typed Connections pattern in section

??). Connections are handled by the FlowControl. This entity is also is

responsible for scheduling the processing firings in a way that avoids firing

a processing with not enough data in its input ports or not enough space

into its output ports. Minimizing latency and securing performance condi-

tions that guarantee correct output (avoiding underruns or deadlocks, for

instance) are other responsibilities of the FlowControl.

3.7.1 Life-cycle and Configurations

A 4MPS Processing object has an explicit lifecycle made of the following

states: unconfigured, ready, and running. The processing object can receive

controls and data only when running. Before getting to that state though,

it needs to go through the ready having received a valid configuration.

Configurations are another kind of parameters that can be input to Pro-

cessing objects and that, unlike controls, produce expensive or structural

changes in the processing object. For instance, a configuration parameter

may include the number of ports that a processing will have or the numbers

of tokens that will be produced in each firing. Therefore, and as opposed

to controls that can be received at any time, configurations can only be set

into a processing object when this is not in running state.

3.7.2 Static vs. dynamic processing compositions

When working with large systems we need to be able to group a number

of independent processing objects into a larger functional unit that may be

treated as a new processing object in itself.

This process, known as composition, can be done in two different ways:

statically at compile time, and dynamically at run time (see [?]). Static com-

positions in the 4MPS metamodel are called Processing Composites while

dynamic compositions are called Networks.

Choosing between Processing Composites and Networks is a trade-off
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between efficiency versus understandability and flexibility. In Processing

Composites the developer is in charge of deciding the behavior of the objects

at compile time and can therefore fine-tune their efficiency. On the other

hand Networks offer an automatic flow and data management that is much

more convenient but might result in reduced efficiency in some particular

cases.

3.7.3 Processing Networks

Nevertheless Processing Networks in 4MPS are in fact much more than a

composition strategy. The Network metaclass acts as the glue that holds

the metamodel together. Figure ?? depicts a simplified diagram of the main

4MPS metaclasses.

Networks offer an interface to instantiate new processing objects given

a string with its class name using a processing object factory and a plug-in

loader. They also offer interface for connecting the processing objects and,

most important, they automatically control their firing.

This firing scheduling can follow different strategies by either having a

static scheduling decided before hand or implementing a dynamic scheduling

policy such as a push strategy starting firing the up-source processings, or

a pull strategy where we start querying for data to the most down-stream

processings. As a matter of fact, these different strategies depend on the

topology of the network and can be directly related to the different schedul-

ing algorithms available for data-flow networks and similar graphical models

of computation (see [?] for an in-depth discussion of this topic. In any case,

to accommodate all this variability the metamodel provides for different

FlowControl sub-classes which are in charge of the firing strategy, and are

pluggable to the Network processing container.

3.8 Towards a Pattern Language for Data-flow Ar-

chitectures

3.8.1 Introduction

As explained in the previous section, the general 4MPS Metamodel can

be interpreted as a particular case of a Data-flow Network. Furthermore,

when reviewing many frameworks and environments related to CLAM (see
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Figure 3.24: Participant classes in a 4MPS Network. Note that a 4MPS
Network is a dynamic run-time composition of Processing objects that con-
tains not only Processing instances but also a list of connected Ports and
Controls and a Flow Control.
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section ??) we also uncovered that most of these frameworks end up offering

a variation of data-flow networks.

While 4MPS offers a valid high-level metamodel for most of these envi-

ronments it is sometimes more useful to present a lower-level architecture in

the language of design patterns, where recurring and non-obvious design so-

lutions can be shared. Thus, such pattern language bridges the gap between

an abstract metamodel such as 4MPS and the concrete implementation given

a set of constraints.

Patterns provide a convenient way to formalize and reuse design experi-

ence. However, neither data-flow systems nor other audio-related areas have

yet received many attention on domain-specific patterns. The only previous

efforts in the audio domain that we are aware of are several Music Infor-

mation Retrieval patterns [?] and a catalog with 6 real-time audio patterns

presented in a Workshop [?]. In the general multimedia field there are some

related pattern languages like [?] but these few examples have a narrower

scope than the one here presented.

There have been previous efforts in building pattern languages for the

data-flow paradigm, most noticeably the one by Manolescu [?]. However,

the pattern language here presented is different because it takes our experi-

ence building generic audio frameworks and models [?] [?] and maps them

to traditional Graphical Models of Computation. The catalog is already

useful for building systems in the Multimedia domain and aims at growing

(incorporating more patterns) into a more complete design pattern language

of that domain.

In the following paragraphs we offer a brief summary of a complete pat-

tern language for Data-flow Architecture in the Multimedia domain pre-

sented in [?]. As an example we also include the more detailed description

of two of the most important patterns in the catalog.

All the patterns presented in this catalog fit within the generic architec-

tural pattern defined by Manolescu as the Data Flow Architecture pattern.

However, this architectural pattern does not address problems related to

relevant aspects such as message passing protocol, processing objects exe-

cution scheduling or data tokens management. These and other aspects are

addressed in our pattern language, which contains the following patterns

classified in three main categories:

• General Data-flow Patterns address problems of how to organize
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high-level aspects of the data-flow architecture, by having different

types of module connections. Semantic Ports addresses distinct man-

agement of tokens by semantic; Driver Ports addresses how to make

modules executions independently of the availability of certain kind

of tokens. Stream and Event Ports addresses how to synchronize dif-

ferent streams and events arriving to a module; and, finally, Typed

Connections addresses how to deal with typed tokens while allowing

the network connection maker to ignore the concrete types.

• Flow Implementation Patterns address how to physically transfer

tokens from one module to another, according to the types of flow

defined by the general data-flow patterns. Tokens life-cycle, owner-

ship and memory management are recurrent issues in those patterns.

Cascading Event Ports addresses the problem of having a high-priority

event-driven flow able to propagate through the network. Multi-rate

Stream Ports addresses how stream ports can consume and produce at

different rates; Multiple Window Circular Buffer addresses how a writer

and multiple readers can share the same tokens buffer. and Phantom

Buffer addresses how to design a data structure both with the benefits

of a circular buffer and the guarantee of window contiguity.

• Network Usability Patterns address how humans can interact with

data-flow networks. Recursive Networks makes it feasible for humans

to deal with the definition of large complex networks; and Port Mon-

itor addresses how to monitor a flow from a different thread without

compromising the network processing efficiency.

Two of these patterns, Typed Connections and Port Monitor, are

very central to the implementation of the visual prototyping architecture.

Thus, we provide here a summarized version of these patterns. Complete

versions of these and the rest of the patterns in the catalog can be found in

[?].

3.8.2 Pattern: Typed Connections

Context

Most multimedia data-flow systems must manage different kinds of tokens.

In the audio domain we might need to deal with audio buffers, spectra,
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spectral peaks, MFCC’s, MIDI... And you may not even want to limit the

supported types. The same applies to events (control) channels, we could

limit them to floating point types but we may use structured events controls

like the ones in OSC [?].

Heterogeneous data could be handled in a generic way (common abstract

class, void pointers...) but this adds a dynamic type handling overhead to

modules. Module programmers should have to deal with this complexity and

this is not desirable. It is better to directly provide them the proper token

type. Besides that, coupling the communication channel between modules

with the actual token type is good because this eases the channel internal

buffers management.

But using typed connections may imply that the entity that handles

the connections should deal with all the possible types. This could imply,

at least, that the connection entity would have a maintainability problem.

And it could even be unfeasible to manage when the set of those token types

is not known at compilation time, but at run-time, for example, when we

use plugins.

Problem

Connectible entities communicate typed tokens but token types are not lim-

ited. Thus, how can a connection maker do typed connections without

knowing the types?

Forces

• Process is cost-sensitive and should avoid dynamic type checking and

handling.

• Connections are done in run-time by the user, so mismatches in the

token type should be handled.

• Dynamic type handling is a complex and error prone programming

task, thus, placing it on the connection infrastructure is preferable

than placing it on concrete modules implementation.

• Token buffering among modules can be implemented in a wiser, more

efficient way by knowing the concrete token type rather than just

knowing an abstract base class.
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• The collection of token types evolves and grows and this should not

affect the infrastructure.

• A connection maker coupled to the evolving set of types is a mainte-

nance workhorse.

• A type could be added in run time.

Solution

img/classesTypedConnections.png

Figure 3.25: Class diagram of a canonical solution of Typed Connections

Split complementary ports interfaces into an abstract level, which is

independent of the token-type, and a derived level that is coupled to the

token-type. Let the connection maker set the connections thorough the

generic interface, while the connected entities use the token-type coupled

interface to communicate each other. Access typed tokens from the concrete

module implementations using the typed interface.

The class diagram for this solution is shown in figure ??.
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Use run-time type checks when modules get connected (binding time)

to get sure that connected ports types are compatible, and, once they are

correctly connected (processing time), rely just on compile-time type checks.

To do that, the generic connection method on the abstract interface

(bind) should delegate the dynamic type checking to abstract methods

(isCompatible, typeId) implemented on token-type coupled classes.

Consequences

The solution implies that the connection maker is not coupled to token types.

Just concrete modules are coupled to the token types they use.

Type safety is ensured by checking the dynamic type on binding time

and relying on compile time type checks during processing time. So this is

both efficient and safe.

Because both sides on the connection know the token type, buffering

structures can deal with tokens in a wiser way when doing allocations, ini-

tializations, copies, etc.

Concrete modules just access to the static typed tokens. So, no dynamic

type handling is needed.

Besides the static type, connection checking gives the ability to do extra

checks on the connecting entities by accessing semantic type information.

For example, implementations of the bind method could check that the size

and scale of audio spectra match.

3.8.3 Pattern: Port Monitors

Context

Some multimedia applications need to show a graphical representation of

tokens that are being produced by some module out-port. While the vi-

sualization needs just to be fluid, the process has real-time requirements.

This normally requires splitting visualization and processing into different

threads, where the processing thread is scheduled as a high-priority thread.

But because the non real-time monitoring must access to the processing

thread tokens some concurrency handling is needed and this often implies

locking in the two threads.
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Problem

We need to graphically monitor tokens being processed. How to do it with-

out locking the real-time processing while keeping the visualization fluid?

Forces

• The processing has real-time requirements (i.e. The process result

must be calculated in a given time slot)

• Visualizations must be fluid; that means that it should visualize on

time and often but it may skip tokens

• The processing is not filling all the computation time

Solution

The solution is to encapsulate concurrency in a special kind of process mod-

ule, the Port monitor, that is connected to the monitored out-port. Port

monitors offers the visualization thread an special interface to access tokens

in a thread safe way. Internally they have a lock-free data structure which

can be simpler than a lock-free circular buffer since the visualization can

skip tokens.

To manage the concurrency avoiding the processing to stall, the Port

monitor uses two alternated buffers to copy tokens. In a given time, one of

them is the writing one and the other is the reading one. The Port monitor

state includes a flag that indicates which buffer is the writing one. The

Port monitor execution starts by switching the writing buffer and copying

the current token there. Any access from the visualization thread locks the

buffer switching flag. Port execution uses a try lock to switch the buffer, so,

the process thread is not being blocked, it is just writing on the same buffer

while the visualization holds the lock.

Consequences

Applying this pattern we minimize the blocking effect of concurrent access

on two fronts. On one side, the processing thread never blocks. On the

other, the blocking time of the visualization thread is very reduced, as it

only lasts a single flag switching.
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Figure 3.26: A port monitor with its switching two buffers

In any case, the visualization thread may suffer starvation risk. Not be-

cause the visualization thread will be blocked but because it may be reading

always from the same buffer. That may happen if every time the processing

thread tries to switch the buffers, the visualization is blocking. Experience

tell us that this effect is not critical and can be avoided by minimizing the

time the visualization thread is accessing tokens, for example, by copying

them and release.

3.8.4 Patterns as a language

Some of the patterns in the catalog are very high-level, like Semantic Ports

and Driver Ports, while other are much focused on implementation issues,

like Phantom Buffer). Although the catalog is not domain complete, it could

be considered a pattern language because each pattern references higher-

level patterns describing the context in which it can be applied, and lower-

level patterns that could be used after the current one to further refine the

solution. These relations form a hierarchical structure drawn in figure ??.

The arcs between patterns mean “enables” relations: introducing a pattern

in the system enables other patterns to be used.

The catalog shows how to approach the development of a complete data-

flow system in an evolutionary fashion without the need to do big up-front

design. The patterns at the top of the hierarchy suggest to start with high

level decisions, driven by questions like: “do all ports drive the module

execution?” And “does the system have to deal only with stream flow or also

with event flow?” Then move on to address issues related to different token

64



img/patternsRelations.png

Figure 3.27: The multimedia data-flow pattern language. High-level pat-
terns are on the top and the arrows represent the order in which design
problems are being addressed by developers.
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types such as: “do ports need to be strongly typed while Connectible by the

user?”, or “do the stream ports need to consume and produce different block

sizes?”, and so on. On each decision, which will introduce more features and

complexity, a recurrent problem is faced and addressed by one pattern in

the language.

The above patterns are inspired by our experience in the audio domain.

Nevertheless, we believe that those have an immediate applicability in the

more general multimedia domain.

As a matter of fact, all patterns in the “general data-flow patterns”

category can be used on any other data-flow domain. Typed Connections,

Multiple Window Circular Buffer and Phantom Buffer have applicability be-

yond data-flow systems. And, regarding the Port Monitor pattern, though

its description is coupled with the data-flow architecture, it can be extrap-

olated to other environments where a normal priority thread is monitoring

changing data on a real-time one.

Most of the patterns in this catalog can be found in many audio systems.

However, examples of a few others (namely Multi-rate Stream Ports, Multiple

Window Circular Buffer and Phantom Buffer) are hard to find outside of

CLAM so they should be considered innovative patterns (or proto-patterns).

3.9 Summary

This chapter has done a domain analysis of the program family which in-

cludes the applications related to audio and music. Some abstractions has

been extracted such the ones addressing the system data input and output,

user interface interactions, several processing regimes and the implementa-

tion issues and solutions related to them. Then we used such abstractions

to model several archetypical audio applications, and finally, we also used

such abstraction to define the sub-family of applications that are to be visu-

ally built by the prototyping architecture. The abstractions also gave some

guidelines on how the prototyped components could be used in the set of

applications that fall away of the selected sub-family.
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Chapter 4

The prototyping architecture

This chapter describes the details of the prototyping architecture. Firstly,

an overview describes the relations and functionalities of the different archi-

tectonic elements. Then, it explains how each architectonic element address

the different issues that are required to fulfill the functionality.

4.1 Requirements

The family of applications the architecture is able to visually build includes

real-time audio processing applications as defined in ??. This include some

applications archetypes such as real-time software synthesizers, real-time

music analyzers (figure ??) and audio effects and plugins (figure ??).

The only limitation imposed on the target applications is that their logic

should be limited to just starting and stopping the processing algorithm,

configuring it, connecting it to the system streams (audio from devices, au-

dio servers, plugin hosts, MIDI, files, OSC...), visualizing the inner data and

controlling some algorithm parameters while running. Note that these limi-

tations are very much related to the explicit life-cycle of a 4MPS Processing

object outlined in section ??.

Given those limitations, the defined architecture does not claim to vi-

sually build every kind of audio application. For example, audio authoring

tools, which have a more complex application logic, would be out of the

scope, although the architecture would help to build important parts of

such applications.

Besides that, the architecture provides the following features:
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Figure 4.1: An example of audio analysis application: Tonal analysis with
chord extraction. This application can be prototyped in CLAM in a mat-
ter of minutes and is able to analyze and incoming audio and extract and
represent its chords and tonal components.
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Figure 4.2: An example of a rapid-prototyped audio effect application: Pitch
transposition. Note how in this application apart from representing different
signal components three sliders control the process interacting directly with
the underlying processing engine.

• Communication of any kind of data and control objects between GUI

and processing core (not just audio buffers)

• The prototype can be embedded in a wider application with a minimal

effort

• Plugin extensibility for processing units, for graphical elements which

provide data visualization and control sending, and for system con-

nectivity back-ends (JACK, ALSA, PORTAUDIO, LADSPA, VST,

AudioUnit...)

4.2 Main architecture

The proposed architecture (figure ??) has three main components:

• A visual tool to define the audio processing core,

• a visual tool to define the user interface, and

• a run-time engine that joins both elements into a running application.
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Figure 4.3: Visual prototyping architecture. The CLAM components that
enable the user to visually build applications.
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The key element is the run-time engine. It dynamically builds definitions

coming from both tools, relates them and manages the application logic.

We implemented this architecture using some existing tools. We are using

CLAM NetworkEditor as the audio processing visual builder, and Troll-

tech’s Qt Designer as the user interface definition tool. Both Qt Designer

and CLAM NetworkEditor provide similar capabilities in each domain, user

interface and audio processing, which are later exploited by the run-time

engine.

4.3 Visual builders

Qt Designer can be used to define user interfaces by combining several wid-

gets. The set of widget is not limited; developers may define new ones that

can be added to the visual tool as plugins. Figure ?? shows a Qt Designer

session designing the interface for an audio application, which uses some

CLAM data objects related widgets provided by CLAM as a Qt widgets

plugin. Note that other CLAM data related widgets are available on the

left panel list. For example to view spectral peaks, tonal descriptors or

spectra.

Figure 4.4: Qt Designer tool editing the interface of an audio application.

Interface definitions are stored as XML files with the “.ui” extension. Ui

files can be rendered as source code or directly loaded by the application

at run-time. Applications may, also, discover the structure of a run-time
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instantiated user interface by using introspection capabilities.

Figure 4.5: NetworkEditor is the visual builder of the CLAM framework. It
can be used not only as an interactive multimedia data-flow application but
also to build networks that can be run as stand-alone applications embedded
in other applications and plugins.

Analogously, CLAM Network Editor (figure ??) allows to visually com-

bine several processing modules into a processing network definition. The

set of processing modules in the CLAM framework is also extensible with

plugin libraries. Processing network definitions can be stored as XML files

that can be loaded later by applications in run-time. And, finally the CLAM

framework also provides introspection so a loader application may discover

the structure of a run-time loaded network.

4.4 Run-time engine

If only a data-flow visual tool and a visual interface designer was provided,

some programming would still be required to glue it all together and launch

the application. The purpose of the run-time engine, which is called Pro-

totyper in our implementation, is to automatically provide this glue. Next,
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we enumerate the problems that the run-time engine faces and how it solves

them.

4.4.1 Dynamic building

Both component structures, the audio processing network and the user in-

terface, have to be built up dynamically in run-time from an XML definition.

The complexity to be addressed is how to do such task when the elements

of such structure are not known before hand because they are defined by

add-on plugins.

Both CLAM and Qt frameworks provide object factories that can build

objects given a type identifier. Because we want interface and processing

components to be expandable, factories should be able to incorporate new

objects defined by plugin libraries. To enable the creation of a certain type

of object, the class provider must register a creator on the factory at plugin

initialization.

In order to build up the components into an structure, both frameworks

provide means for reflection so the builder can discover the properties and

structure of unknown objects. For instance, in the case of processing ele-

ments, the builder can browse the ports, the controls, and the configuration

parameters using a generic interface, and it can guess the type compatibility

of a given pair of ports or controls.

4.4.2 Relating processing and user interface

The run-time engine must relate components of both structures. For exam-

ple, the spectrum view on the Transposition application (second panel on

figure ??) needs to periodically access spectrum data flowing by a given port

of the processing network. The run-time engine first has to identify which

components, are connected. Then decide whether the connection is feasible.

For example, spectrum data can not be viewed by an spectral peaks view.

And then, perform the connection, all that without the run-time engine

knowing anything about spectra and spectral peaks.

The proposed architecture uses properties such the component name to

relate components on each side. Then components are located by using

introspection capabilities on each side framework.

Once located, the run-time engine must assure that the components are
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compatible and connect them. The run-time engine is not aware of the

types of data that connected objects will handle, we deal that by applying

the Typed Connections design pattern mentioned in section ??. In a nutshell,

this design pattern allows to establish a type dependant connection construct

between two components without the connector maker knowing the types

and still be type safe. This is done by dynamically check the handled type on

connection time, and once the type is checked both sides are connected using

statically type checked mechanisms which will do optimal communication

on run-time.

4.4.3 Thread safe communication in real-time

One of the main issues that typically need extra effort while programming

is multi-threading. It is hard to program and to debug. In real-time audio

applications based on a data flow graph, the processing core is executed

in a high priority thread while the rest of the application is executed in a

normal priority one following the Out-of-band and In-band partition pattern

[?]. Being in different threads, safe communication is needed, but traditional

mechanisms for concurrent access are blocking and the processing thread can

not be blocked. Lock-free structures are overkill as conditions are loose: The

reading thread (visualization) may block and even lose tokens. Indeed the

refresh rate of the screen is orders of magnitude greater than most token

rates. Thus, new solutions, as the one proposed by the Port Monitor pattern

in section ??, are needed.

A Port Monitor is a special kind of processing component which does

double buffering of an input data and offers a thread safe data source in-

terface for the visualization widgets. A flag tells which is the read and the

write buffer. The processing thread does a try lock to switch the writing

buffer. The visualization thread will block the flag when accessing the data

but as the processing thread just does a ‘try lock’, so it will just overwrite

the same buffer but it won’t block fulfilling the real-time requirements of

the processing thread.

4.5 Component extensibility

The architecture provides means to extend its capabilities by adding plug-

ins. Such extensions cover different aspects of the architecture: Processing
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modules, widgets, extended data types, binders...

The shared mechanism of those plug-in is that they populate a singleton

structure such a factory or a meta-data dictionary by creating at global

scope object whose constructor does the population. As library plug-ins are

loaded by CLAM all those objects are created and their constructor register

their load onto the singleton. We use a C++ idiom that ensures that the

singleton is created before any use [?].

Besides processing components and widgets there are other plug-ins

which are worth to explain in detail.

• System Back-ends

• Binding plugins

• Type plugins

4.5.1 Binding Plug-ins

Binding plug-ins are used by the run-time engine to locate special widgets

that need to be related somehow with the network. ‘Special’ means any

criteria on type, name, properties or any other aspect accessible with Qt

introspection capabilities. Binding plug-ins are the ones that bind port

monitors and control senders, but also transport buttons, back-end and

playback indicators...

4.5.2 Type Plug-ins

The Typed Connections pattern does not require to register any type. If

two ports share the token type they can be connected. Anyway type plug-

ins can be defined to increase the services for that type. Currently, such

services just include port coloring.

4.5.3 System back-ends

Real-time audio applications may work in a heterogeneous set of contexts:

System interfaces to the audio devices such as ALSA, OSS, CoreAudio,

WMME, DirectSound or ASIO, wiring API’s such as JACK, or plugins sys-

tems such as LADSPA, VST, VSTi, DSSI, Audio Units... Audio applications
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have to perform a set of tasks that tightly depend on such a context. Man-

aging threads, providing callbacks, exploring devices, or feeding data from

and to the application.

The architecture solves that complexity by enabling back-end plugins.

Back-end plugins encapsulate context dependant tasks into interchangeable

objects, so that by selecting a different back-end plugin, the application can

be run in a different context. This also has the side effect that enables the

extension of the architecture to future execution contexts.

Thus, back-end plugins address the often complex back-end setup, relate

and feed sources and sinks in a network with real system sources and sinks,

control processing thread and provide any required callback. Such plugins,

hide all that complexity with a simple interface with operations such as

setting up the back-end, binding a network, start and stop the processing,

and release the back-end.

Some important aspects of the back-end plugin system should transcend

to the user interface to provide a set of functionalities: choosing the back-

end among the available ones, choosing the device binding to each source

and sink, changing the back-end status (playing, stopped, paused...), and

displaying back-end information, such the status, error conditions... The ar-

chitecture also defines graphical elements that perform such function, which

are connected upon binding.

4.6 Reusing components in non-real-time applica-

tions

Section ??, defined what we consider a real-time applications which are the

ones that can be modeled with the visual prototyping architecture. This

disables the application of the visual prototyping to applications featuring:

• Non-streaming processing

• In-memory representations

• Multiple audio item processing

• Any other application logic that is more complex than binding to ex-

ternal streams, starting, stopping, control the transport on file based

streams, sending control events and visualizing instant data.
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Anyway, components developed in the present framework can be helpful

to develop applications that fall outside of those limits. For example, being

the sinks and sources a plug-in system the full application as is, can be

used within a more complex host applications, as in the case of an audio

authoring tool or a DAW system.

Also, if a regular toolkit is used for the user interface, such interface

definition can be used and dynamically extended in a more complex appli-

cation which introduces more application logic. All the means to bind the

user interface and the processing algorithm in a transparent way are also

available when programming.

Also, in-memory or file representation could serve as streaming source or

sink for an streaming process, including the data source for instant views.

And finally the streaming processing components can be building blocks

of more complex processing patterns. Section ?? explained a way of build-

ing a non-streaming processing by communicating summary computations

among two different streaming processes. And streaming and non-streaming

processes could be the core process scheduled for multiple audio item pro-

cessing.

Examples of some of those adaptations can be found in some use cases

explained in chapter ??.
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Chapter 5

Evaluation

This chapter evaluates the proposed work by analysing the actual implemen-

tation of several use cases for the prototyping architecture. For each case

we do a short description of the problem, a memory of the development pro-

cess, a summary of the developed processing and graphical components and

a discussion on how the architecture performed. Use cases were approached

in parallel to the architecture definition, development and refining so, some

flaws detected in early use cases get fixed in later use cases.

At the end of the chapter we apply a set of systematic criteria to quali-

tatively evaluate the architecture and analyse the current limitations.

5.1 Use case: SMS processing

We used this first use case to implement the basics of the prototyping archi-

tecture elements. As both developments were very interleaved it can not be

used to evaluate the efficiency of the process, just to explore its capabilities

and evaluate the quality of the final product.

Spectral modeling, often referred as Spectral Modeling Synthesis or SMS[?],

is a technique that gets an alternative representation of the sound which

splits the signals into a set of sinusoids and an stochastic residual. SMS rep-

resentations enables high level manipulations of the sound by manipulating

both components independently[?] [?].

The key elements of the spectral modeling are the analysis and the syn-

thesis. The analysis (figure ??) is the process of obtaining the sinusoidal and

the spectral components given an audio stream. The synthesis (figure ??)
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is the inverse process, reconstructing the original signal given the spectral

components. Analysis and synthesis are streaming processes; each audio

frame corresponds to a pair of spectral peaks and a residual spectrum.

Transformation processes can be performed in the middle. Most of the

transformations are also streaming processes. But, for instance, SMS time

stretch effect is a example of transformation that can not be executed in

real-time conditions, because input and output streams are not synchronous

in time. Anyway, the architecture could enable its implementation if the

source of the target stream does not impose real-time constraints, such an

audio file or a in-memory representation.

Figure 5.1: SMS Analysis block diagram.

Figure 5.2: SMS Synthesis block diagram.
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5.1.1 Development memory

At the time this experiment started, the CLAM framework already con-

tained code for SMS technology. Indeed most of the processing modules in

the CLAM were related to spectral modeling. But they were implemented

in the context of an authoring tool, CLAM SMSTools, which did all the

processing in off-line, and the implementation was not ready for stream pro-

cessing. Existing modules at the time were tightly coupled to an in-memory

representation of the full audio item, where the results of the analysis and

successive transformations were dropped. So in order to move them to the

prototyping platform we had to redesign them as streaming processes.

Removing references to the in-memory representation was a very hard

process because hidden dependencies on the code existed and we often broke

the code. We finally decided to revert all the changes and repeat the port

with exhaustive back to back tests.

Communicated data object were audio buffers, spectra, spectral peaks

and fundamental frequency candidates. In order to visualize them we de-

veloped a first version of the Port Monitor solution. After most of the basic

elements were set up (analysis, synthesis and views) we started to build up

applications. Mostly effects for instance:

• SMS Pitch Shift effect, already shown at figure ??, which changes the

frequency of the sinusoids.

• Gender Change effect, figure ??, which turns male voices into female

voices and female voices to male voices.

5.1.2 Interface components

As explained above, three new views based on port monitors had to be

developed: The Oscilloscope, to view audio streams, the Spectrum View to

see the residual component and other spectra, and the Spectral Peaks View

to see the sinusoidal component.

Applications also required widgets to send control events of different

kinds: Bounded floating point, boolean and enumerations. We reused the

widgets provided by the Qt toolkit and implemented control sender process-

ing modules to bridge the threading gap.
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Figure 5.3: The GenderChange application based on SMS technology work-
ing on real-time.

5.1.3 Discussion

By forcing modules to work with ports in streaming, we decoupled the trans-

formation modules from the handling of the in-memory structure. All the

code to access on the structure a given data on a given instant of time was

thrown away. By hiding the time handling details, the code of the transfor-

mation modules became more compact and understandable (a mean of 40

percent decrease in SLOC).

All the hidden dependencies were turned into module ports and control

which made dependencies explicit both for the user at the network level while

visually prototyping, and for the module maintainer on the C++ code.

So, migrating to the new architecture forced to refactor the code toward

a good design: separation of concerns, definition of well defined interfaces...

And we consider this a sign of having a good Path of Lowest Resistance.
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5.2 Use case: Multi-faceted real-time Analysis

This small project started as some CLAM user asked on the mailing list for

supporting MFCC [?] and LPC analysis on the CLAM Music Annotator.

The CLAM Music Annotator is an authoring tool for doing off-line analysis

and visualizing and editing the results.

Although user requested them for the Annotator, such analysis are able

to be implemented as streaming and testing and assembling could be more

easy visually so we first implemented them as a real-time analysis and then

reused the components on the Annotator.

This use case is simple but interesting because introduced the need of

reusing view components for different port data types.

5.2.1 Development memory

Again the components were already in CLAM but not ported to be usable

from the Network Editor yet. Also there was a pair of programs that did

the assembly of objects and the extraction for each analysis. So we ported

the modules and assembled them within the Network Editor.

Also the visualizations were missing. Most of the data to visualize were

float arrays, to be visualized as line or bar graphs. But the actual data on the

port was not float array but more abstract types such as LP Models which

contains two arrays, the filter coefficients and the reflection coefficients. In

this case for example, we had to create two different Port Monitors getting

the same type of port but offering different data with the same interface.

Then the widget that displays the Graph Bar could just take the array

wherever it comes from, by using this uniform interface which also provided

meta-data such as the labels or the numeric intervals to compute them, the

units, the bounds of the function...

Figure 5.4: Processing components of the multifaceted real-time analysis.
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Figure 5.5: A multi faceted real-time analysis showing different views of
the incoming sound: LPC coefficients, Oscilloscope, LPC envelope, FFT
spectrum, Mel Spectrum and Mel Cepstrum.

In order to reuse the Bar Graph view on the Annotator we provided an

implementation of the same interface but instead of taking the data from

a port monitor, it retrieves the data from the in-memory representation of

the off-line computed data.

5.3 Use case: Chord Extraction

This experience happened while the prototyping architecture implementa-

tion and concepts were usable but still incomplete and it provided useful

insights of the requirements and the applicability. It is also useful to see the

process, costs and benefits of porting a research Matlab code to the proto-

typing architecture. The developer was myself, so the results are not valid

to analyze other factors such as framework usability.

The chord extraction in CLAM is an implementation of the algorithm

described by Harte in [?] and it is based on Harte’s existing Matlab im-
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plementation. We modularized and ported the original Matlab implemen-

tation with a very close support of Harte and other colleges from his lab,

we did some drastic optimizations and real-time adaptations, we created

some instant-views for chord analysis, and adapted all to the prototyping

architecture. An screen shot of the final application is shown at figure ??.

Figure 5.6: The ’Tonal Analysis’ prototyped application.

5.3.1 Development memory

The code port followed a tight methodical process this time. Firstly I set up

a battery of back to back tests to the full algorithm. Such back to back tests

were useful to do refactoring on the original Matlab code. I also placed some

back to back test on intermediate points of the algorithm. Once the original

code was propped up, I started to refactor the Matlab code to extract little

modules with strong cohesion. Every time a new module was identified,

white box unit tests were created. Such unit test were used as a guide for

test driven developing the module in C++. As more C++ modules were

available, intermediate back to back references were used as input or output

to back to back testing the aggregation of C++ modules.

Modularity made it also easier to profile the full algorithm to detect

modules which were critical in performance. After doing some enhancements

the code was optimized from lasting 30 times of the excerpt duration to last
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a third of the excerpt duration. That allowed us to increase the temporal

resolution of the algorithm while still being real-time, and it also allowed us

to be less conservative with the frequency of execution of the tests.

Although the algorithm was optimized enough to be executed on real-

time, one of the components was non-streaming and the execution had to

be off-line. So the first integrated version of the algorithm, instead of being

integrated into the prototyping architecture was integrated on the CLAM

Annotator which allowed off-line execution.

Two instant views were added to the Annotator to visualize some of

the algorithm outputs: the Key Space and the Tonnetz which I explain

below. Having some views that had to be port monitors on the future

spotted the need of setting an abstract interface so that the view could

access transparently real-time computed data through a port monitor, or an

in-memory non volatile representation such the one that used the Annotator.

Later on, I substituted the module that forced off-line execution, which

was related to the tuning detection, and all the modules could be managed

by the Network Editor. Back to back tests are no more useful when you are

trying to enhance the algorithm. So, in order to check future improvements,

a precision/recall test was set on the Beatles hand annotated collection.

With the new real-time incarnation of the algorithm, further improve-

ments were tried. For example, considering the none chord with the same

weight for all the pitches, helped to discard tagging as chord segments of the

song were there was no real tonal. The network editor made easier to create

and use alternative components to the existing ones. Also to fine tune pa-

rameters as they are part of the configuration. Moreover, new views of the

intermediate data, such as the Polar Chroma Peaks and the Chord Ranking

views, gave more insight about what was happening on the algorithm.

5.3.2 Processing components

Most of the components for the Tonal Analysis prototype had to be reimple-

mented from scratch taking the Matlab implementation as reference. The

criteria to define the modules boundaries has been finding proper algorithm

points where a representation change was produced or where a given rep-

resentation suffered some clear operation. The modules we defined are the

following ones:

Fourier Transform: Original code used the intrinsic FFT operation in
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Figure 5.7: Processing modules of the tonal analysis

Matlab. For the C++ version, we used the ’Fastest Fourier of the West’ [?]

implementation which offers a great speed up.

Constant Q Transform: Takes a spectrum and multiplies it by a matrix to

get a spectral representation where the distance among bins is proportional

to the bin frequency. The output has the same number of bins to represent

each semitone.

Constant Q Folder: Takes a constant Q transform and folds it into an

octave so that the bins for the same pitch note on different octaves get

added. That representation is called the chromagram.

Circular peaks finder: Takes the chromagram and finds the quadratic

interpolated peaks. It is circular because it considers the first and last bins

as adjacent bins.

Circular peaks tune finder: Folds the peaks into a semitone and add

them considering them as phasors where the cents within the semitone sets

the angle and the peak magnitude sets the module. The vector sum gives

the instant tunning and the tonal level of the frame. A parameter controls

the inertia, that is how much of the past tunning results affects the current

tuning to be used.

Circular peaks tuner: Takes the circular peaks and the detuning and

corrects them to be centered on the standard center.

Circular peaks to pitch profile: Adds all the peak magnitudes within a

pitch into a pitch profile. A parameter let’s choose whether the peaks are

weighted the same or they are weighted depending on their distance to the

pitch center.

Chord correlation: Correlates the pitch profile with a database of chord

models and outputs the correlation for each chord model.
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Chord segmentation: Takes the chord correlation and decides which is

the current chord. Several parameters play there such as the minimum

chord length, the minimum factor between the None chord and the first

chord correlation in order the first chord to be considered...

5.3.3 Interface components

In this experiment we explored the addition of views that could be useful

either to the development of the algorithm or to a final user. Often the

results of the algorithm are not resolutive. In such cases we discovered

that a proper visualization was more informative than the output of the

segmentation algorithm.

Most of those views were also reused on the Annotator, by providing

front-end to the in-memory representation that implemented the same data

source interface than the Port Monitor, thus demonstrating that real-time

user interface is also useful to authoring tools environments.

Figure 5.8: The Tonnetz view showing a C major chord.

The Tonnetz view (figure ??) displays the intensity of each pitch note

in musical meaningful arrangement inspired in Riemann1 network represen-

tation of harmonic relations [?]. Notes are displayed as hexagonal tiles so

that notes with harmonic relations are side by side. For instance, horizontal

adjacent tiles form a series of fifth intervals, top-right adjacency means a

major third interval while bottom-right adjacency means a minor third in-

terval. Such distribution is interesting because common chord modes have

a distinguishable shape (figure ??).

The Key Space view [?] displays the probabilities of major and minor

chords to be the sounding chord. It uses the chord correlation output.

Chords are also placed so that chords with common pitches are placed to-

gether so that normally is seeing a colored stain on similar chords with a

1A 19th century music theorist
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Figure 5.9: The Key Space view showing a C major chord. Minor chords
labels are lower case.

prominent color spot on the center highlighting the most probable cord. See

the figure ??.

Figure 5.10: The Chord Ranking view.

The chord ranking view (figure ??) displays as horizontal bars the corre-

lation of the top most probable chords in a frame. It allows see other chords

than major and minor shown in the Key Space.

Figure 5.11: The Polar Chroma Peaks view.

The Polar Chroma Peaks view (figure ??) represents the peaks detected

on the chromagram displayed as fasors in the octave circle.

5.3.4 Discussion

This first experience gave us some insight on the new development frame-

work.

First, porting has asserted to be a source of a lot of translation bugs.

The testing propping up we set up detected and located a lot of them that
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Figure 5.12: Different chord modes are seen as different shapes in the Ton-
netz view
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otherwise could not be detected until the final system was build, and at that

moment, location would be very hard, and even more with the cross effect

of different bugs acting at the same time. So, the porting method we used

also proved to be useful.

Next, modularization helped in several aspects besides the testing. It

helped to locate the performance edges by using profiling. It also helped

to experiment with new alternative modules without throwing away the old

implementation just by plug-in one or other module. Configuration

It was also proven that a network could be executed both in off-line and

real-time modes. Also that instant views could be reused with minor effort

in an authoring tool such the CLAM Music Annotator.

On the other hand the final application, although it was innovative and

it impressed a lot of potential users, it had some usability concerns. We

built a nice technology demonstrator but we failed to consider some aspects

of its usage context. Such application was meant to be used for novice

instrument players that wanted to know the chords of songs of their own

personal collection. Instant views provide very volatile information so the

user had to play back again the same excerpt once and again. The only way

of controlling that was by accessing to the multimedia player that was piping

audio to the analyzer. The application context switch was very inconvenient,

as the user hands were often busy with the instrument.

That fact drove us to do a different version of the application that gets

the audio from a file and controls the transport. This also solved another

problem: the algorithm introduced very much latency into the output. By

taking the input from a file, the analysis latency can be compensated by a

delay.

Of course, because the components were shared, as the streaming version

was still useful for other purposes, we still could keep both of them.

5.4 Use case: 3D room acoustics simulator

This is one of the first projects built once the prototyping architecture was

mostly stable.

Some months ago, two contributors to the CLAM project, Pau Arumı́

and myself, were hired to implement some existing acoustics technologies. A

new system to simulate the acoustics of sound emitter and receptors moving
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Figure 5.13: Integration of the chord extractor into the Music Annotator

within a virtual 3D scenario. After taking a look at the requirements we

decided to implement most of the modules from scratch, and assemble them

using the prototyping environment.

For this project we took two decisions:

• to reimplement basic spectral functionalities existing in CLAM to

make them less complex, and

• to build up the components using the prototyping architecture.

5.4.1 Development memory

The system development was split in several phases:

• Solving the surround system (5.1 speaker components from pressure

and velocity vector at the hot spot)

• Solving the real-time convolution

• Setting up a hyper-grid database of impulse response (an IR for each

pair of 3D points; emitter and receiver)

• Solving the interpolation of the impulse response on the actual posi-

tions, taking the nearest points on the grid.
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Figure 5.14: The virtual spacialization network.

Because each step is independent, each step could be addressed indepen-

dently. This is a sign that the system eases progressive evolution.

5.4.2 Processing Components

Here we describe some of the components that composes the system:

Low Latency Convolution: This component does a convolution in an

hybrid temporal-spectral domain. Hybrid temporal-spectral domain convo-

lution means that it is a similar implementation than time domain convolu-

tion but multiplying and adding spectra from the discrete Fourier transforms

(DFT) instead of multiplying samples. See figure ??. By doing this, we get

a compromise between the speed of spectral domain convolution and the

low latency of time domain for long impulse responses. The latency of the

system is the duration of a single frame.

Impulse Response Database Fetcher: Given a pair of emitter and receiver

points generates an interpolated impulse response.

5.4.3 Interface components

In order to control the positions of the emitter and the receiver on the scene

we developed a widget that sends two controls depending on a point within

a surface. The same control also served to control the head orientation of

the receiver.

This control served as a first use case of a widget having to be connected
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Figure 5.15: Diagram of the low latency convolution processing component.
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to two different connection points. This forced us to use a different property

than the name to do the binding.

Figure 5.16: The interface for the 3D scenario acoustics simulation

5.4.4 Discussion

We built each of those components and test them independently, and as-

sembling them to have the final system.

When reimplementing the spectral processing building blocks, having

the basic implemented in such a modular way was very useful to experiment

on which is the most efficient way of doing operations in the sense of which

representation is harder to obtain and to operate on.

5.5 Overall discussion

This section summarizes the insights obtained from the previous experi-

ments. To do so, we follow the systematic criteria enumerated in ?? and

??.

Ceiling and Threshold

The architecture lowers the learning threshold, by no requiring programming

skills and hiding hard audio related implementation details to the designer.

Still the architecture provides a relatively high complexity ceiling to the set
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of applications that can be built just visually. But it also offers mechanism

to raise such ceiling by extending existing components or by programming

a more complex application logic.

Path of least resistance

A tool based on such architecture offers a path of least resistance which leads

to good design decisions, for example, separating processing and interface

in different threads, setting controlled real-time and thread-safe means for

communicating them, modularizing processing and the visual elements, and

reusing components among designs.

Predictability

The execution of the network is deterministic and predictable. Although the

scheduling algorithm could take different orders of module firings because

of dependencies, this should not affect the result.

Moving Target

Moving target criteria is something that could happen in the future but can

not be predicted.

Closeness of mapping

The application to be built has been split in two domains. Each domain has

been addressed by a visual domain-specific language which is close to the

abstractions we use.

In the case of the processing domain the visual language we use the data-

flow paradigm which is very close to the modular design often used in signal

processing.

Moreover, most of the modules and the shared data are high level, so

we are not dealing with low level programming constructs such as LabView,

ProGraph or PD, encouraging the users to encapsulate that level of pro-

gramming within a C++ programmed module.

On the interface domain, we are dealing with widgets, layouts and prop-

erties which are also entities, interface designers are used to.
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Viscosity

Conceptually the data-flow interface has the same flaws that other visual

languages in the sense that changes mean to lay out again the components.

A lot of time is wasted in that kind of task. This is something that the

Network Editor tool could solve by providing means of automatic layout.

Anyway, producing small changes is not hard conceptually. SMS example

gave a lot of examples where going from one application to another was a

matter of switching some processing modules.

Also new usability features has been added to leverage tedious tasks such

as providing access to the port monitors that can be connected to a port in

the contextual menu of the port, the ability of adding controls senders with

a double click on the receiving control...

Hidden dependencies

As shown on the SMS use case, the 4MPS abstraction makes data depen-

dencies explicit. This is good, but we also found on the system a very nasty

hidden dependency: Whenever you change the name of a port or the name

of a processing, the connections with the interface can not established. This

is something to solve in the future.

In the case of the ports, which depends on the module implementation,

this issue could be solved by providing port alias after a rename. Those port

alias could be stored within the factory meta-data. Also a migration tool

could be helpful. That tool could update such names, which corresponds to

a migration alias, whenever an old network is loaded.

Renaming the modules is something that could be handled by synchro-

nizing both prototyping tools.

Hard mental operations

Because the high level of the processing operations, hard mental operations

are hardly found.

Secondary notation

Naming and layout are the currently available secondary notations on the

processing visual building. They are not hard to master but they are hard

96



to keep. The layout because it is hard to keep when changes are introduced.

The naming because the hidden dependency previously explained.

It would be interesting adding documentation facilities such the ones

explained in [?].

Consistency

We have not detected any consistency flaw but in the naming of the actual

names of the ports and module types. I mean, ports does not follow the same

naming convention so it is hard to remember the port names. Of course,

this is not a flaw of the architecture neither on the architecture implementa-

tion but on the module implementation, although the implementation could

enforce some kind of convention.

Progressive evolution

Along the examples, we have used progressive evaluation as the methodology

to get the applications up and running. Modularization enables white box

and black box testing.
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Chapter 6

Conclusions

6.1 Introduction

This thesis addressed the problem of reducing the time to market and costs of

audio software development by defining a software architecture that enables

the construction of complete and rich audio applications by visual means.

Existing platforms provide visual prototyping for the processing aspect

using data flow visual languages. When constructing final user products

either the processing prototype is embedded into a fully programmed appli-

cation logic, which implies a lot of development, or the visual prototyping

tool itself is used as final user interface, which clutters the user interface

with useless, or even inconvenient, functionalities.

Visual user interface builder tools cover visual specification of the inter-

face layout and a minimal reactivity of the interface of an applications. Even

by using such tools, the developer must still provide low level programming

to connect the user interface to the processing core.

The proposed architecture reuses the concepts from both, visual user

interface builders and data flow visual languages for signal processing. Both

concepts are broadly used but are hard to be combined to build full appli-

cations. The architecture enables the designer to visually bind both sides,

enabling her to ignore most implementation details such as communication

among real-time threads and platform dependant audio subsystem program-

ming.

Thanks to the architecture a designer could build an application by per-

forming the following steps:
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1. Designing a processing network by dropping processing elements into

a canvas and connecting their ports to express data and control com-

munication

2. Designing an interface by dropping widgets into an interface and set-

ting up the layout

3. Setting up a binding between visualization widgets and processing data

ports and between control widgets and processing core input controls

4. Launch it with the corresponding audio back-end

To evaluate the architecture, an instance of such architecture was built

using the CLAM framework and the Qt toolkit. The Qt toolkit was ex-

tended by adding new audio related widgets that can be reused for audio

data visualization and audio systems control. Such widgets were made avail-

able as components for visual composition of interfaces using the Qt toolkit

prototyping tool. A visual audio prototyping tool was constructed on the

top of the CLAM framework so that it integrates well on the prototyping

architecture, and a run-time engine was implemented to join both worlds

and providing a minimal application logic.

The development process of existing open source audio projects have

been compared with the development of similar functionality by using tools

based on such architecture, ascertaining that the architecture contributes to

shorten development times and increases the software quality by enabling

more iterations over the design.

The benefits of using such architecture has been argued according differ-

ent criteria that has been proved valid for historical software development

tools, such as learning threshold, complexity ceiling, path of least resistance...

concluding the following: The architecture lowers the learning threshold, by

no requiring programming skills and hiding hard audio related implemen-

tation details to the designer. Still the architecture provides a relatively

high complexity ceiling to the set of applications that can be built just visu-

ally. But it also offers mechanism to raise such ceiling by extending existing

components or by programming a more complex application logic.

It has also been shown that a tool based on such architecture offers a

path of least resistance which leads to good design decisions, for example,

separating processing and interface in different threads, setting controlled
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real-time and thread-safe means for communicating them, modularizing pro-

cessing and the visual elements, and reusing components among designs.

6.2 Summary of contributions

This thesis makes significant contributions to the state of the art in audio

software engineering. Such contributions are summarized in this section.

A way of systematically analyse the requirements of an audio

application. Existing literature on audio software engineering addresses

concrete aspects of audio application development. This thesis provides, in

chapter ??, systematic and generic criteria to determine when such issues

must be addressed. We have analyzed several facets of audio applications

such as data sources and sinks, data-time dependencies, processing modes,

and user interface interactions. Such elements conforms the application logic

and each one is bound to a set of low level issues.

An architecture that transparently solves low-level issues re-

lated to real-time audio applications. The architecture presented in

chapter ?? solves transparently most of the issues which are related to the

application logic of real-time application. For instance, multi-threading,

lock-free thread safe communication with the user interface, system context

handling, buffered file access...

An architecture that enables visual building of real-time appli-

cations. The architecture presented in chapter ?? also enables the visual

building by reusing existing technologies, such as data-flow languages and

user interface visual builders, by providing means to dynamically join their

outputs: relating them in definition time and bind them in run-time. Appli-

cation logic can be specified at high level by relating entities of the interface

with the ones at the processing core.

Means of reusing visually built components as components in

other stereotypes of audio applications. Although visual building is

limited to real-time audio applications, section ?? provides some hints on

how components visually built can be reused as is on other stereotypes of

applications.

Component extensibility. This thesis provides means to extend the

available components of a visual prototyping architecture in a very flexible

way. The architecture allows (section ??) to define protocols among interface
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and processing components without fixing such protocols on compile time

but still allowing protocol checking. The architecture ceiling can be extended

in many fronts.

An analysis on how the architecture performs when developing

real use cases. The implementation of the architecture and its use to

implement several use cases has provided some insights on how the tool

performs and how it could be improved.

As result of the work in this thesis, a number of publications have been

published in conferences and journals which are listed in appendix ??. Also

the work presented in this thesis has been awarded at the ACM Multimedia

Conference 2007 Open Source Competition.

6.3 Limitations

6.3.1 Target applications and processing models

The set of target applications for this first approach of visual prototyping,

was intentionally limited to real-time processing applications. That is, appli-

cations which process streams of audio related data. They are often referred

as audio analysis, synthesis and transformation tools, depending on how

many audio input and outputs they take. For instance, a chord extraction

application which takes an audio and shows the chords while playing, is an

analysis tool. An application which takes an input human voice and changes

the speaker gender, is an instance of transformation tool. Also, an applica-

tion that takes a point on the vowel triangle and makes the corresponding

vowel sound is an instance of synthesis tool.

They all share a common trait: data is synchronously flowing and pro-

cessing elements are taking the decisions based on the past and present data.

Some kind of processing is outside of this description. Some algorithms per-

form what we call ’off-line processing’. This kind of processing is commonly

use in Music Information Retrieval when, taking all the data extracted from

an audio, the algorithm do an overall reasoning.

Also application with an extended application logic fall out of the scope

of the solution provided by the architecture. The architecture just gives the

user interaction means to view processing data, to send controls to the pro-

cessing core and to control the audio sources and sinks. This is insufficient

for a large number of audio applications. For instance, audio authoring tools
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introduce the concept of timeline and are audio object centered instead pro-

cessing centered. Audio authoring tools are thought to work with several

audio objects and different processing pipelines can be applied. Portions of

the architecture could be used but they are not enough to fully build the

application.

6.3.2 The ceiling of visual means

We have seen that the described architecture has some clear limits on how

much can be done with it, just by visual means. Visual means are not as

rich as programming languages but they are easier to learn and use.

Non visual programming is an acceptable learning threshold if we con-

sider that current audio tool development is mostly done by programming.

Furthermore, the architecture also lowers the costs of the programming task

in the cases when it is needed. So, the ceiling of visual means seems to be

something that is not that critical because users are used to work in worse

scenarios and the architecture supposes a better one even it could be en-

hanced. But, visual design introduces a new segment of users which are not

skilled on programming. Programming might represent an abrupt slope in-

crease on their learning curve. That’s why the visual means ceiling becomes

important here.

Moreover, programming is not just a learning threshold, it is also a work-

load threshold. Programming involves a work context change, and dealing

with tedious and time consuming tasks such as deploying a build environ-

ment, facing compiling errors, or debugging runtime errors.

There are several aspects where the visual means have a clear ceiling:

• extending the application work flow,

• extending processing or visual components, and

• the visual complexity of wiring networks.

As explained before, the set of target applications has been limited to

real-time processing applications. But even when deploying a real-time pro-

cessing application, designer might want to allow more interaction than just

controlling the audio sinks and sources, visualizing data and sending con-

trols. For instance, in a synthesiser application, we could want to choose

the instrument we are using, choosing presets, configuring the application,
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showing the help... Also, the user interface design limits the visual design

options to a single window. As soon as the target requires more applica-

tion logic, the architecture can not solve that visually and programming is

required.

Another ceiling for visual means, is the extensibility of the architecture

by providing new interface and processing components. Such extensibility

is offered to raise the ceiling of what the architecture is able to build. But

again, although the architecture easies the process, programming is still

required.

The later ceiling are the human limits of dealing complex wired networks.

When a network gets large, visual design becomes harder. Connections are

more difficult to trace and display limitations do not allow the designer

to fit a large network in the canvas to analyze it. This can be solved by

aggregating the processing elements into a single higher level one. Again,

with the current proposal, this can be done just by programming.

6.4 Further research

6.4.1 New application stereotypes

As this thesis has been a first approach to address the visual building of

audio applications, the scope was limited to simple use cases. Further re-

search might address other stereotypes of audio applications which may have

enough homogeneity to be constructed mostly visually. Chapter ?? gave in-

sights on further generalizations and in section ??, we suggested new ways

of reusing the components the architecture to other kind of processing mod-

ules. We have seen two of those stereotypes that could be addressed due

to their homogeneity but that went out of the scope of this thesis: audio

authoring tools and music information retrieval systems.

6.4.2 Raising the visual prototyping ceiling

Still there is enough room to raise the visual prototyping ceiling. Further

research could address new ways of extending the set of components available

that minimize the learning threshold of programming. Several proposals

might be explored. One could be integrating the component programming

cycle into the audio processing prototyping tool. This way we are saving the
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designer a lot of work load including a work context change, the deployment

of the development environment, and the cycle of compiling and installing

before testing. The other proposal could be using scripting languages to

develop new components. Scripting languages are known to be easy to

learn, and because the lack of compiling cycle users feel more comfortable

with them. Both integrated development environment into the processing

prototyping tool, and the scripting approach could be combined.

There is also a lot of ways that the processing prototyping tool usability

could be enhanced. For example, providing debugging facilities such as step

to step execution. Using a console with completion could add speed to the

definition of the network as now dragging interface requires mouse precision.

Also interfaces to edit the structure of a new processing module with actions

such as ’adding ports’, adding controls’, ’add configuration parameter’, ’edit

the code’, and ’recompile’ could help to close the development cycle.

6.4.3 Reducing processing design complexity

Another way to enable the user to provide new components is by composi-

tion: aggregating several processing elements into a bigger one to be reused

in a different network. Besides being a way of creating new processing,

aggregation is a mean to hide processing design complexity addressing the

forehand mentioned problem of the wiring complexity. Further research

could address this and other ways of reducing it. For instance, a common

issue in audio is that several channels are pipelined on equivalent processing

chains by multiplying the number of elements and wires. A solution for this

problem could reduce the design complexity.

6.4.4 Other multimedia areas

Ideas presented in this research could be also extended to other multime-

dia areas than just audio. Video and image processing environments could

benefit from prototyping tools.

The ability to handle multiple types of data tokens, is perfect to allow

high level processing of video. Currently, platforms that provides such data

flexibility exist. GStreamer, for instance, provides full routing of complex

objects through a processing network and, being a free software platform, it

has a wide adoption in the industry. But such platforms are available just
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at the programming level. Full visual prototyping and visual binding to a

user interface to control and monitor the stream would be valuable.

6.4.5 New devices

Current interface prototyping tools address common arena of desktop com-

puters where the interface paradigm has been stable for so many years.

Nowadays, we have a large diversity of computerized devices to interact

with. Ubiquitous computing brings new opportunities to architectures simi-

lar to the one exposed by embedding rich audio applications in such devices:

For instance, adding voice transformation on cellular phones. But those de-

vices imposes new requirements to the interface building and old tools for

interface prototyping are becoming obsoleted.

For example, on new devices we can not assume a keyboard and a pointer

as input devices, cellular phones just have a numeric keypad and they have

input, some devices have no keyboard, and just have a pointer, other provide

their custom buttons... Display capabilities may changes and also, we should

cope with processing and audio input/output limitations.

Such diversity of devices is a new challenge for interface prototyping,

but also for audio processing prototyping. The architecture already provides

audio back-end abstraction but there is no way of abstracting the interface

for the device input/output capabilities.

Being such devices a commodity, one interesting research area could be

to define a device prototyping tool where all, software and hardware interface

and the audio processing core can be designed.

6.5 Final summary

This research have demonstrated how the development process of audio ap-

plications can be fastened by providing visual means to construct them.

We have focused on a reduced but very common subset of audio applica-

tions offering an architecture that joins two existing technologies: data-flow

visual languages and graphical interface builders. Exercising such architec-

ture addressing different problems has also provided useful insight for future

research on extending visual prototyping beyond its current limits.
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Appendix A

Related publications by the

author

In this annex, we provide a list of publications which are relevant to this the-

sis in which its author has participated. Abstracts and electronic versions of

most of these publications, as well as a list of other publications from the au-

thor non related to this dissertation are available from http://www.iua.upf.es/mtg

A.1 Presentations on conferences

Authors: Garcia, D. Arumı́, P. Amatriain, X.

Year: 2007.

Title: ’Visual prototyping of audio applications.’

Conference: Proceedings of Linux Audio Conference 2007; Berlin.

Related to: chapter ??

Authors: Garcia, D. Arumı́, P. Amatriain, X.

Year: 2006.

Title: ’Extracció d’acords amb l’Anotador de Música de CLAM’

Conference: Proceedings of V Jornades de Programari Lliure; Barcelona.

Related to: chapter ??

Authors: Amatriain, X. Arumı́, P. Garcia, D.

Year: 2006.

Title: ’CLAM: A Framework for Efficient and Rapid Development of Cross-
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platform Audio Applications’

Conference: Proceedings of ACM Multimedia 2006; Santa Barbara, CA.

Related to: chapter ??.

Authors: Arumı́, P. Garcia, D. Amatriain, X.

Year: 2006.

Title: ’A Data Flow Pattern Language for Audio and Music Computing’

Conference: Proceedings of Pattern Languages of Programs 2006; Port-

land, Oregon

Related to: section ??.

Authors: Herrera, P. Celma, O. Massaguer, J. Cano, P. Gómez, E. Gouyon,

F. Koppenberger, M. Garcia, D. G. Mahedero, J. Wack, N.

Year: 2005.

Title: ’Mucosa: a music content semantic annotator’

Conference: Proceedings of 6th International Conference on Music Infor-

mation Retrieval; London, UK

Related to: chapters ?? and ??.

Authors: Amatriain, X. Massaguer, J. Garcia, D. Mosquera, I.

Year: 2005.

Title: ’The CLAM Annotator: A Cross-platform Audio Descriptors Edit-

ing Tool’

Conference: Poster presented at 6th International Conference on Music

Information Retrieval; London, UK

Related to: chapters ??, ?? and ??.

Authors: Celma, O. Gómez, E. Janer, J. Gouyon, F. Herrera, P. Gar-

cia, D.

Year: 2004.

Title: ’Tools for Content-Based Retrieval and Transformation of Audio Us-

ing MPEG-7: The SPOffline and the MDTools’

Conference: Proceedings of 25th International AES Conference; London,

UK

Related to: chapter ??.
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Authors: Arumı́, P. Garcia, D. Amatriain, X.

Year: 2003.

Title: ’CLAM, Una llibreria lliure per Audio i Música’

Conference: Proceedings of II Jornades de Software Lliure; Barcelona,

Spain

Related to: chapters ?? and ??.

Authors: Amatriain, X. de Boer, M. Robledo, E. Garcia, D.

Year: 2002.

Title: ’CLAM: An OO Framework for Developing Audio and Music Appli-

cations’

Conference: Proceedings of 17th Annual ACM Conference on Object-

Oriented Programming, Systems, Languages and Applications; Seattle (USA)

Related to: chapters ?? and ??.

Authors: Garcia, D. Amatriain, X.

Year: 2001.

Title: ’XML as a means of control for audio processing, synthesis and anal-

ysis’

Conference: Proceedings of MOSART Workshop on Current Research Di-

rections in Computer Music; Barcelona, Spain

Related to: chapter ??.

A.2 Theses

Authors: Garcia, D.

Year: 2002.

Title: ’Suport de XML/MPEG-7 per una llibreria de processat d’àudio i

música.’

Type: Master Thesis

Institution: Enginyeria La Salle. Barcelona

Related to: chapters ?? and ??.
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